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Abstract. Tongue motion during speech and swallowing involves syn-
ergies of locally deforming regions, or functional units. Motion cluster-
ing during tongue motion can be used to reveal the tongue’s intrin-
sic functional organization. A novel matrix factorization and cluster-
ing method for tissues tracked using tagged magnetic resonance imag-
ing (tMRI) is presented. Functional units are estimated using a graph-
regularized sparse non-negative matrix factorization framework, learning
latent building blocks and the corresponding weighting map from motion
features derived from tissue displacements. Spectral clustering using the
weighting map is then performed to determine the coherent regions—
i.e., functional units—defined by the tongue motion. Two-dimensional
image data is used to verify that the proposed algorithm clusters the
different types of images accurately. Three-dimensional tMRI data from
five subjects carrying out simple non-speech/speech tasks are analyzed
to show how the proposed approach defines a subject/task-specific func-
tional parcellation of the tongue in localized regions.

1 Introduction

The relationship between the structural and functional components of the tongue
is poorly understood partly due to the complex tongue anatomy and muscle
interactions. The human tongue is a volume preserving structure with highly
complex, orthogonally oriented, and interdigitated muscles. The tongue muscles
interact with one another in order to carry out the oromotor behaviors of speak-
ing, swallowing, and breathing, which are executed by deforming local functional
units in this complex muscular array. Tongue motions are synergies created by
locally deforming regions, or functional units [1]. Functional units are regions of
the tongue that exhibit homogeneous motion during the execution of the specific
task. Therefore, identifying functional units and understanding the mechanisms
of coupling among them can identify motor control strategy in both normal and
adapted speech (e.g., tongue motion after tongue cancer surgery).

To understand the function of the tongue, magnetic resonance imaging (MRI)
has played a pivotal role in imaging both tongue surface motion using cine-
MRI [2, 3] and internal tissue motion using tagged-MRI (tMRI) [4]. Despite
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the rich data on internal tissue motion that is available from tMRI, there has
been very little research on its analysis to determine functional units. A key
previous report is that of Stone et al. [5] who presented a method to deter-
mine functional segments using ultrasound and tMRI. Another key report is
that of Ramanarayanan et al. [6], who used a convolutive non-negative matrix
factorization (NMF) algorithm to determine tongue movement primitives from
electromagnetic articulatory. Our work is inspired by both of these approaches,
but we use far richer tMRI-derived data (3D displacement fields) and the NMF
approach with the addition of sparsity and intrinsic data geometry in defining
functional units.

Modeling a data matrix as sparse linear combinations of basis vectors is a
popular approach to understanding speech production. Among them, NMF and
variants involving sparsity have received substantial attention since the seminal
work by Lee and Seung [7]. NMF is a matrix factorization method that focuses
on data matrices whose elements are non-negative. NMF is based on a parts-
based representation inspired by psychological and physiological observations
about the human brain [8]. However, since standard NMF assumes a standard
Euclidean distance measure for its data, it fails to discover the intrinsic geometry
of its data [8].

In our work, we assume a manifold of the data within an NMF approach,
which thereby captures the intrinsic geometry of the motion features derived
from tMRI. In particular, we propose a new approach to determine functional
units of tongue motion from tMRI using graph-regularized sparse NMF with
spectral clustering. The method integrates a regularization term that encourages
the computation of distances on a manifold rather than the whole of Euclidean
space in order to preserve the intrinsic geometry of the observed motion data.
The use of NMF is important because it does not allow negative combinations
of basis vectors. This is consistent with the analysis of muscles, which either
have positive activation or no activation, not negative activation. Both quanti-
tative and qualitative evaluation results demonstrate the validity of the proposed
method and its superiority to conventional clustering algorithms.

2 Proposed Approach

2.1 Problem Statement

Consider a set of P internal tongue tissue points each with n scalar quantities
(e.g., magnitude and angle of each track) tracked through F time frames. These
quantities characterize each point and are used to group them into functional
units. The location of the p-th tissue point at the f -th time frame can be written
as (xpf , ypf , zpf ). The tongue motion can then be represented by a 3F×P spatio-

temporal feature matrix N = [n1, ...,nP ] ∈ R3F×P , where the p-th column is
given by

np = [xp1, · · · , x
p
F , y

p
1 , · · · , y

p
F , z

p
1 , · · · , z

p
F ]T . (1)

We cast the problem of determining the functional units as a motion clustering
problem. Thus, the goal is to determine a permutation of the columns to form
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[N1| N2| · · · |Nc] , where the submatrix Ni comprises point tracks associated
with the i-th submotion—i.e., the i-th functional unit. We provide the proposed
approach in more detail. The overall algorithm is shown below.

Algorithm 1: Determination of the functional units

1. Extract motion features from displacement fields and construct U.
2. Apply graph-regularized sparse NMF to U to obtain V and W.
3. Compute affinity matrix A from W.
4. Apply spectral clustering to A and determine functional units.

2.2 Extraction of Motion Quantities

The first step in our algorithm is to extract the motion features that characterize
the cohesive motion patterns over time. We extract motion features including
the magnitude and angle of the track as in [9] described as

mp
f =

√
(xpf+1 − x

p
f )2 + (ypf+1 − y

p
f )2 + (zpf+1 − z

p
f )2 (2)
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f√

(xpf+1 − x
p
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p
f )2

+ 1 (3)
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p
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p
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p
f )2

+ 1 (4)

cypf =
zpf+1 − z

p
f√

(zpf+1 − z
p
f )2 + (xpf+1 − x

p
f )2

+ 1, (5)

where mp
f denotes the magnitude of the track and czpf , cxpf , and cypf represent

the cosine of the angle projected in the z, x, and y axes plus one, respectively,
which are in the range of 0 to 2. For clustering, we gather all the motion features
into a 4(F − 1) × P non-negative matrix U = [u1, ...,un] ∈ Rm×n

+ , where the
p-th column can be expressed as

up = [mp
1, · · · ,m

p
F−1, cz

p
1 , · · · , cz

p
F−1, cx

p
1, · · · , cx

p
F−1, cy

p
1 , · · · , cy

p
F−1]T . (6)

These features are always non-negative and can therefore be input to NMF.

2.3 Graph-regularized Sparse Non-negative Matrix Factorization

NMF: Given a non-negative data matrix U and k ≤ min(m,n), let V = [vik] ∈
Rm×k

+ be the building blocks and let W = [wkj ] ∈ Rk×n
+ be the weighting map.

The goal of NMF is to learn building blocks and corresponding weights such
that the input U is approximated by a product of two non-negative matrices
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(i.e., U ≈ VW). A typical way to define NMF is to use the Frobenius norm to
measure the difference between U and VW [7] given by

E(V,W) = ‖U−VW‖2F =
∑
i,j

(
uij −

K∑
k=1

vikwkj

)2

(7)

where ‖·‖F denotes the matrix Frobenius norm. The solution can be found
through the multiplicative update rule [7]:

V← V. ∗UWT ./VWWT (8)

W←W. ∗VTU./V
T
VW (9)

Sparsity Constraint: In this work, we impose a sparsity constraint on the
weighting map W. The sparsity constraint allows to encode the high-dimensional
motion data using only a few active components, thereby making the weighting
map easy to interpret. In particular, the weighting map obtained this way will
represent the simplest tongue behavior that could generate the observed mo-
tion. In the NMF framework, it has been reported that a fractional regularizer
using the L1/2 norm outperformed the L1 norm regularizer and gave sparser
solutions [10]. Thus, we incorporate the L1/2 sparsity constraint into the NMF
framework, which can be expressed as

E(V,W) =
1

2
‖U−VW‖2F + η ‖W‖1/2, (10)

where the parameter η > 0 controls the sparseness of W and ‖W‖1/2 is defined
as

‖W‖1/2 =

 k∑
i=1

n∑
j=1

w
1/2
ij

2

. (11)

Manifold Regularization: Many human motions lie on low-dimensional man-
ifolds that are non-Euclidean [11]. NMF with the L1/2 norm sparsity constraint,
however, produces a weighting map based on a Euclidean structure in the high-
dimensional data space. Thus, the intrinsic and geometric relation between
motion features may not be reflected accurately. To remedy this, we incorpo-
rate a manifold regularization that respects the intrinsic geometric structure as
in [8,12,13]. The manifold regularization favors the local geometric structure and
also serves as a smoothness operator, which reduces the interference of noise. Our
final objective function incorporating both the manifold regularization and the
sparsity constraint can then be given by

E(V,W) =
1

2
‖U−VW‖2F +

1

2
λTr(WLWT ) + η ‖W‖1/2, (12)

where λ is a balancing parameter of the manifold regularization, Tr(·) denotes
the trace of a matrix, Q is a heat kernel weighting, D is a diagonal matrix where
Djj =

∑
l

Qjl, and L = D−Q, which is the graph Laplacian.
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Minimization: The objective function in Eq. (12) is not convex in both V and
W and therefore it is not possible to find the global minima. In order to minimize
the objective function, we use a multiplicative iterative method similiar to that
used in [13]. Let Ψ = [ψmk] and Φ = [φkn] be the Lagrange multiplier subject
to vmk ≥ 0 and wkn ≥ 0, respectively. By using the definition of the Frobenius
norm, ‖U‖F = (Tr(UTU))1/2, and matrix calculus, the Lagrangian L is given
by

L =
1

2
Tr(UUT )− Tr(UWTVT ) +

1

2
Tr(VWWTVT )

+
λ

2
Tr(WLWT ) + Tr(ΨVT ) + Tr(ΦWT ) + η ‖W‖1/2 .

(13)

The partial derivatives of L with respect to U and V are

∂L
∂V

= −UWT + VWWT + Ψ

∂L
∂W

= −VTU + VTVW + λWL +
η

2
W−1/2 + Φ

(14)

By using Karush-Kuhn-Tucker conditions—i.e., ΨmkVmk = 0 and ΦknWkn =
0—the final update rule becomes

V← V. ∗UWT ./VWWT

W←W. ∗ (VTU + λWQ)./(VTVW +
η

2
W−1/2 + λWD).

(15)

2.4 Spectral Clustering

The non-negative weighting map provides a good measure of regional tissue
point similarity. Thus spectral clustering using the weighting map is adopted
to determine the cohesive motion patterns as spectral clustering outperforms
traditional clustering algorithms such as the K-means algorithm [14].

Once W is determined from Eq. (15), an affinity matrix A is constructed:

A(i, j) = exp

(
−
‖w(i)− w(j)‖2

σ

)
, (16)

where w(i) is the i-th column vector of W and σ denotes the scale (we set σ =
0.02 in this work). The column vectors of W form nodes in the graph, and the
similarity A computed between column vectors of W form the edge weights. On
the affinity matrix, we apply a spectral clustering technique using a normalized
cut algorithm [15].

3 Experimental Results

3.1 Experiments Using 2D Data

Since there is no ground truth in our in vivo data, we used two 2D datasets
to demonstrate the clustering performance of the proposed method. The first
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dataset is the COIL20 image library, which contains 20 classes (32×32 gray
scale images of 20 objects). The second dataset is the CMU PIE face database,
which has 68 classes (32×32 gray scale face images of 68 persons). In order
to compare the performance of the different algorithms, we used a K-means
clustering method (K-means), a normalized cut method (N-Cut) [15], standard
NMF with K-means clustering (NMF-K), graph-regularized NMF with K-means
clustering (G-NMF-K) [8], graph-regularized NMF with spectral clustering (G-
NMF-S), graph-regularized sparse NMF with K-means clustering (GS-NMF-K),
and our method (GS-NMF-S). Two metrics, the Normalized Mutual Information
(NMI) and the accuracy (AC), were used to measure the clustering performance
as used in [8]. Table 1 lists the NMI and AC values, demonstrating that the
proposed method outperformed other methods. We also compared the L1/2 and
L1 norms experimentally, and the L1/2 norm had slightly better results.

Table 1. Clustering Performance: NMI and AC

NMI (%) K-means N-Cut NMF-K G-NMF-K GS-NMF-K G-NMF-S Ours

COIL20 (K=20) 73.80% 76.56% 74.36% 87.59% 90.11% 90.24% 90.63%
PIE (K=68) 54.40% 77.13% 69.82% 89.93% 89.95% 90.95% 91.74%

AC (%) K-means N-Cut NMF-K G-NMF-K GS-NMF-K G-NMF-S Ours

COIL20 (K=20) 60.48% 66.52% 66.73% 72.22% 83.75% 84.58% 85.00%
PIE (K=68) 23.91% 65.91% 66.21% 79.3% 79.93% 80.60% 84.31%

3.2 Experiments Using In Vivo Tongue Data

We also tested our method using a simple non-speech protrusion task and a
speech task: “a souk”. Four subjects said “a souk” and one subject performed
the protrusion task. All MRI scanning was performed on a Siemens 3.0 T Tim
Treo system (Siemens Medical Solutions, Malvern, PA) with 12-channel head and
4-channel neck coil. The tMRI datasets were collected using Magnitude Imaged
CSPAMM Reconstructed images [16]. The datasets had a 1 second duration, 26
time-frames with a temporal resolution of 36 ms for each phase with no delay
from the tagging pulse, 6 mm thick slices (6 mm tag separation), 1.875 mm
in-plane resolution with no gap. The field-of-view was 24 cm. We acquired 2D
orthogonal stacks of tMRI and used harmonic phase (HARP) to track internal
tissue points. The incompressible deformation estimation algorithm was then
used to combine 2D tracking data to produce the 3D tracking result with an
incompressibility constraint [17].

Fig. 1 shows the protrusion task. The outer tongue layer expands forward
and upward (but not backward), and the region near the jaw has little motion.
Functional units, based on magnitude and angle, have been extracted for two
(Fig. 1(b)) and three clusters (Fig. 1(c)). Fig. 1(b) is a good representation
of forward protrusion (blue) vs no motion (red), but the three cluster output
introduces noise, suggesting there are only two clusters, or functional units.
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Fig. 1. Illustration of protrusion showing (a) 3D displacement field, (b) functional units
(2 clusters), (c) functional units (3 clusters)

Fig. 2. Illustration of motion from /s/ to /u/ showing (a) 3D displacement field, (b)
functional units (2 clusters), (c) functional units (3 clusters)

Fig. 2 shows the motion from /s/ to /u/ during the word “a souk”. The
functional units were determined using our method for two clusters (Fig. 2(b))
and three clusters (Fig. 2(c)), respectively. Note that the three clusters better
represent the motions of the tongue. These motions include backward motion of
the tongue tip (blue), upward motion of the tongue body (green), and forward
motion of the posterior tongue (red).

4 Discussion and Conclusion

In this work, inspired by recent advances in sparse NMF and manifold learning,
we presented a novel method for determining functional units from tMRI. Unlike
previous algorithms, this proposed work aims at identifying the internal, coher-
ent manifold structure of high-dimensional motion data to determine functional
units. The contributions of this work are two-fold. In an NMF framework, we for-
mulate a new clustering problem, that of a learning latent weighting map as well
as spectral clustering and we give an efficient algorithm to solve this problem.
Our method performed better than K-means, N-Cut, NMF-K, G-NMF-K, GS-
NMF-K, and G-NMF-S using 2D data. In a tongue motion analysis context, we
define functional units from tMRI, which opens new vistas to study speech pro-
duction. The identified functional units are visually assessed and further studies
using biomechanical stimulations are needed to co-validate our findings due to
the lack of ground truth in in vivo data. The proposed method gives a principled
method for defining subject/task-specific functional units, which can be poten-
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tially used to elucidate speech-related disorders.
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