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Abstract

Analyzing the motion of the human tongue surface provides valuable information about

speech and swallowing. One method to analyse this motion is to acquire two-dimensional

ultrasound images and extract the tongue surface contours from them. Quantitative and statis-

tical analysis of these extracted contours is made difficult because of the absence of physical

fleshpoint markers on them. In this research, this problem is overcome by pre-processing the

contours using Kriging. Pre-processing includes extrapolating and resampling the contours

on a regular spatial grid. The preprocessed contours can then be visualised as spatiotemporal

surfaces. A dedicated user interface called SURFACES is designed to aid in the generation,

visualisation and quantitative comparisons of these spatiotemporal surfaces.

Keywords: Tongue, Ultrasound, Spatiotemporal surface, Extrapolation, Kriging, Visualization,

SURFACES
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1 INTRODUCTION

Motion of the surface of the human tongue is of interest because the tongue is critical in speaking,

swallowing, and breathing. Being a deformable and volume-preserving object, the tongue can

produce a variety of surface shapes through complex activation of its muscles [1;2]. Imaging

techniques are often used to depict the shapes of the tongue and the vocal tract. These techniques

include both fleshpoint measurements (X-ray microbeam and electromagnetic midsagittal articu-

lator), and imaging techniques (ultrasound [3], X-ray [4], and magnetic resonance imaging (MRI)

[4]). Compared to the imaging techniques, the fleshpoint measurements interfere with natural

speech and also introduce the methodological problem of extrapolating the tongue surface between

and beyond the fleshpoints [5]. The imaging techniques provide a more complete representation of

the tongue surface, though they have their limitations. Among the imaging modalities, ultrasound

is very attractive for producing an image sequence of tongue motion because of real-time capture

rates (30 frames per second), convenience of experimentation, and cost. Ultrasound has been

extensively used to analyse speech production [4;6] and to understand the act of swallowing [7;8].

In this paper, we have used a sequence of two-dimensional ultrasound images to understand the

motion of the human tongue during speech and swallowing. The sequence of images is acquired at

video frame rates and represents the mid-sagittal (lengthwise) section of the tongue (figure 1(a)).

To account for the intra-subject variability in speech and swallowing, the image sequences are

acquired for multiple repetitions of the same utterance or the same kind of swallow from a single

subject. In order to increase the data analysis speed, automatic extraction and tracking of tongue

surface contours have been implemented [9] (figure 1(b)). Each set of these extracted tongue

contours constitutes a very high dimensional data set – a dense set of points on the tongue (typically

around 100 sample points on the tongue) moving over time with data collected at a rate of 30 frames

per second (figure 1(c)).

Insert figure 1 about here

While such high dimensional data can be visualised in a spatiotemporal fashion (see waterfall

display in figure 1(d)), quantitative comparisons like averaging and comparison, are impossible
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because of the absence of physical fleshpoint markers. The absence of physical markers implies

that there is no simple point-to-point correspondence between contours, which is necessary for

averaging and comparing two contours. Therefore, it is necessary that the contours be sampled on

an identical spatial grid and that they be of the same length. If the contours are of equal length and

if they are sampled on identical grids, then a spatial correspondence can be established between

two spatial points on two contours that share the same x coordinate. But the following three factors

lead to the apparent length differences and irregular sampling of contours.

1. Data loss at tongue tip and tongue root – The tongue tip and tongue root are difficult to im-

age using ultrasound. The tongue tip is obscured by the air beneath it and the tongue root

is obscured by the shadow of the hyoid bone. This might lead to a change in the apparent

length of the extracted contours.

2. Change in tongue contour length – The tongue contours may be different lengths for differ-

ent repetitions of the same speech-sound due to speaker imprecision. Moreover, the tongue

length can change even during one utterance due to the volume-preserving nature of the

tongue. For example, vertical expansion or compression must be balanced by an anterior-

posterior expansion or compression, respectively, which changes the tongue length.

3. Contour sampling effects – An increase in the gradient of a portion of the extracted contour,

increases the density of sampling in that portion. This behaviour of the contour extraction

algorithm results in differences both in the spatial sampling locations and local sampling

density.

To address these difficulties, our strategy is to pre-process the contours by equalising their

lengths, and then resample them on the same grid. Pre-processing methods, such as registering,

smoothing, extrapolating, and interpolating data, are necessary steps in many statistical applica-

tions [10]. A variety of pre-processing methods have been suggested by Stud et al in Ref. [5]

and Stone et al in Ref. [11], for the application of principal component analysis (PCA) on coronal

tongue contour data. Methods to equalise the lengths of the contours include combinations of

the following three approaches: 1) truncation of the longer contours beyond a defined region; 2)

extrapolation of shorter contours to the size of longer ones through linear or spline extension;
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and 3) padding shorter curves with constant values. The truncation approach, although good for

certain kinds of contours, discards interesting and valid data from the longer curves. Slud et.

al [5] discarded the attempt to extrapolate using splines, because of unacceptable swings in the

extrapolated contours; instead they used the ‘padding’ approach, where the shorter curves are

padded with endpoint averages. They argue that, even though padding will introduce artificial

discontinuities, it did not affect the PCA methods. But, these artificial discontinuities are visually

unappealing and can be a problem in other statistical analyses. In this research our approach

is to extrapolate the shorter contours using Kriging which produces smooth contours without

discontinuities and oscillations.

The problem of spatial data interpolation and extrapolation is common to many scientific areas,

for example, image processing, economic forecasting and geostatistics. Various methods have

been used for interpolation [12–15] e.g. inverse distance weighting, Kriging, polynomial splines,

Hardy’s multi-quadratic method, and tension finite difference method. Some of these interpola-

tion algorithms have been used directly for extrapolation, but the results differ in their accuracy.

Among these methods, the inverse distance weighting method is considered to be robust in terms

of estimation error. This robustness is due to the weighted averaging of data values, resulting

in estimates not too far from the actual data. This method, however, introduces abrupt changes

in contours, which make the contour non-differentiable, unsmooth and visually unappealing (see

figure 2(a)). This makes the contours difficult to be used for further analysis. On the other hand,

polynomial splines, especially the higher order splines, sometimes lead to undesirable oscillations

in the extrapolated values depending on the gradients of the values near the end of the contours

(see figure 2(a)) [16;17].

Insert figure 2 about here

To illustrate the problem, figure 2 shows a typical extracted tongue surface contour. The data

corresponding to the extracted contour is represented in the form of a stem plot descending from

the top of the plot. Note that the sampling density is higher in locations where the slope is larger,

such as at the back of the tongue (on the left). This occurs because the contour itself is sampled
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uniformly along its length. Thus, as the slope of the contour increases, the density of sampling

with respect to the x-axis also increases. Figure 2(a) shows two extrapolated methods for the same

data set: one using inverse square distance weighting (a special case of inverse distance weighting

where the weighting exponent is two) and the other using cubic splines. In both cases the quality

of interpolation within the tongue surface is good. The problem starts to appear in the extrapolated

part. In the case of inverse square distance weighting, the value of the extrapolated values are

constrained to stay within the values of the data. Hence there is an abrupt change in shape, which

is uncharacteristic of a tongue shape. In the case of cubic splines, clearly there is a non-intuitive

and extreme fluctuation in the extrapolation.

In order to avoid the above problems, we use Kriging [18] to extrapolate the tongue shape.

Kriging is a statistical estimation technique that uses the statistics of the sampled function to

estimate a continuous function that interpolates between the sampled points and also extrapolates

beyond the endpoints of the contours. The output of Kriging is a smooth, visually appealing fit

of the data, making Kriging suitable for pre-processing the contours. Both the oscillation and the

abruptness are absent in figure 2(b), where the extrapolation is done using Kriging. The key to

Kriging’s improved performance in extrapolation is its spatial asymptotic properties. Also, given

the sample data points and their statistics, Kriging estimates a continuous function that best fits

the data points. Therefore, the resulting continuous function can be resampled at any given spatial

grid. After each contour has been extrapolated and resampled, the contours can be visualised as

a spatiotemporal surface and can be analysed using a dedicated software tool called SURFACES,

which we also present in this paper.

2 METHODS

2.1 Data acquisition

We acquire a sequence of ultrasound images of the mid-sagittal section of the tongue (figure 1(a)).

The sequence of ultrasound images is acquired as the subject either speaks a given utterance or

swallows a particular bolus. One of the images in an ultrasound sequence is shown in figure 1(b),
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with the extracted contour overlayed as white dots. The ultrasound scan rate is set to 30 images

per second. Each subject is asked to repeat the utterance multiple times (usually 7 times, with the

first and last omitted from further processing) in order to account for the intra-subject variability

in speech production. The audio data is also recorded, but it is not directly useful in the context of

this paper. The sequence of images is acquired both in analog and in digital format. The images

are then input into the contour extraction program, which is described in the next section.

2.2 Automatic contour extraction and tracking

Each image in the sequence is processed using the algorithm proposed by Li et al [9]. The

algorithm uses a discrete form of deformable contours and imposes speech, tongue, and ultrasound

imaging constraints. The initial contour of the tongue shape is user-defined; it is then used as

the initialisation for the deformable model. Using the initial contour and the model constraints,

the algorithm tracks the tongue surface over the series of images. The algorithm also imposes

regularising constraints on the deformable contours, so that the resulting contour is smooth. Each

contour is represented as a set of y values, which represents the height of the tongue (calculated

from the top of the image) measured at sampling locations determined by the x values (figure 1(c)).

A dedicated software tool incorporating the algorithm is used to extract and track the contours from

the ultrasound image sequences (see Li et al in this volume for more details). These contours are

the input for the pre-processing using Kriging.

2.3 Introduction to Kriging

Kriging (pronounced with a long i-vowel) is named after the South African mining engineer D.

Krige who developed it for estimating mineral deposits from scattered ore samples [12;19]. Since

then it has been used to interpolate spatially dependent data in a wide variety of disciplines. Kriging

is a modified linear regression technique that estimates a value at a point by assuming that the value

is spatially related to the known values in the neighborhood of the point. Kriging computes the

value for the unknown data point using a weighted linear sum of known data values. The weights
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are chosen to minimise the estimation error variance while keeping the average estimation error

zero. Hence, Kriging is called the best linear unbiased estimator because it theoretically tries to

minimise the variance of estimation error, while being an unbiased estimation procedure [19].

Direct minimisation of error variance is not possible because the true values are unknown.

Hence, Kriging uses a random function model, where the data points are assumed to be realisations

of random variables and the point to be estimated is also a random variable. These random variables

are assumed to have specific covariance structure; selection of which is crucial in the estimation

procedure. So given the model, the error variance can be modelled and then minimised under the

unbiasedness constraint to get the Kriging solution.

2.4 Derivation of Kriging solution

Given observations at spatial points x1,x2, ...,xp, we want to estimate the value of the function at

any spatial point x. Kriging estimates a continuous function s(x), so that the average estimation

error is zero and the error variance is minimum. Since Kriging estimates a continuous function,

we can get the value of the function at any point x.

In our case, the observations are the ‘yi’ values that measure the height of tongue contours from

the top of the ultrasound image at sampling points ‘xi’. Since the xi’s are one-dimensional, we let

x = x, a one-dimensional variable. Kriging models the estimated function s(x) as consisting of

two components

s(x) = u(x) + fT(x)d . (1)

The first term u(x) is a zero-mean random function with known covariance function k(xa, xb) [20].

The covariance function models the spatial correlation in the data. The second term fT(x)d is the

mean of the function s(x). The term f(x) is r × 1 vector of known ‘drift functions’ and d is the

r × 1 vector of unknown ‘drift coefficients’. The mean of the function s(x) is deterministic, but

unknown. Usually the drift functions are taken to be monomials of degree less than or equal to

a chosen value q. In our 1-D case, r = q + 1. Given the shape of the tongue contours, we have
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selected q = 1, which leads to linear drift functions (r = 2),

f(x) = [1 x]T.

Intuitively, Kriging can be seen as estimating two components of the contour s(x). The mean,

fT(x)d, captures the global shape of the contour, while the zero-mean random function, u(x),

captures the variation of the contour around its mean. The mean is a linear combination of drift

functions. In this research we use linear drift functions which means that the global shape of

the contours is captured with a linear function with a given slope and an intercept. The variation

around the mean is captured by the zero mean random function u(x). The behaviour of these two

components is critical in determining how the extrapolated curve will look. A brief discussion on

the extrapolation properties is discussed after the Kriging solution has been developed.

Given this statistical model for the data, Kriging produces the Best Linear Unbiased Estimate

(BLUE), which consists of a linear combination of the observations.

ŝ(x) = aTy ,

where y is a vector of the observations (‘y values) at x1, x2, ..., xp and a(x) is a p × 1 vector of

coefficients, which we want to estimate. The constraint of unbiasedness of the estimate leads to

the constraint on the coefficients,

Fa(x) = f(x) ,

where

F = [f(x1) . . . f(xp)] , (2)

which is an r × p matrix. The Kriging estimate is then obtained by finding ŝ(x) which minimises

the estimation error variance

E[(s(x)− ŝ(x))2]

subject to the unbiasedness constraint. The constrained minimisation problem can be solved using

the method of Lagrange multipliers and the solution depends only on f(x), F , data covariance
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matrix

K =











k(x1, x1) . . . k(x1, xp)

... . . . ...

k(xp, x1) . . . k(xp, xp)











, (3)

and the covariance vector

k(x) = [k(x, x1) . . . k(x, xp)]
T . (4)

The solution is

ŝ(x) = kTw + fT(x)d̂ , (5)

where

w = K−1[I − FT(FK−1FT)−1FK−1]y ,

d̂ = (FK−1FT)FK−1y .

For more details on the derivation of Kriging, please see reference 21. Details of the algorithm

implemented in this paper are given in Appendix A.

Thus, the solution of Kriging is a continuous function ŝ(x), which can be resampled on an

arbitrary spatial grid, thus overcoming the irregular sampling problem. Notably, the spatial grid

can include extrapolated points that are beyond the original range of xi’s over which the data was

collected. This compensates for apparent length changes of tongue contours because of data loss

and speaker imprecision.

The selection of the covariance structure of the data is important in Kriging estimation. In

our algorithm, we use the generalised covariance function, k(xa, xb) = ‖xa − xb‖
2ln‖xa − xb‖

2.

The use of this covariance function makes our Kriging solution the same as the thin-plate spline

solution [22]. Thin-plate spline is an interpolation method that estimates a smooth curve that passes

through all given data points so that the final curve is minimally bent. The name ‘thin plate spline’

refers to a physical analogy involving the bending of a thin sheet of metal, when the tongue heights

are set as deflections of the metal plate in the z-direction. In our case, we deal with a 1-D analog of
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this bent metal sheet. It has been shown that the thin-plate spline is a special form of Kriging [23]

and under certain conditions they are the same.

Thin plate splines are smooth and asymptotically parallel to the mean of the estimated function.

In the extrapolated region, while the zero mean random function tends to flatten out, the mean func-

tion continues on its trend, thus dominating the behaviour of the curve. So, during extrapolation

the contour typically follows the global trend of the contour, which in our case is linear because

of the use of linear drift terms. Since the thin-plate spline solution has a smoothing term built

in, the extrapolation will be smooth. Unacceptably huge drifts can occur while extrapolating with

thin-plate splines; but it happens only at points that are much further away from the data, when

compared to the spread in data locations. In typical cases, we extrapolate less than 6 mm on either

side of the tongue, where the extrapolation performs reasonably well. A detailed validation of the

quality of the extrapolation and the estimation errors are presented later in this paper in section 4.

A typical ultrasound data set contains 13-40 contours depending on the length of the speech

utterance or swallow and the video frame rate of the ultrasound scanner. Each contour is extrap-

olated and resampled using the above method. Then the contours are stacked as a spatiotemporal

surface [see figure 3(b)]. Similar processing can be done on different repetitions of the same speech

utterance or swallow, and resulting surfaces can be averaged to yield an average spatiotemporal

surface.

Insert figure 3 about here

2.5 SURFACES software

Figure 3(a) shows a snapshot of the graphical user interface (GUI) for SURFACES (available for

download at www.speech.umaryland.edu/software). The GUI and the algorithm were implemented

in MATLAB Version 6 (Mathworks, Natick MA, USA) and ported to a stand-alone version. The

GUI has five main panels. The functions in the first and second panels pre-processes individual

contour for further analysis. The program reads in the initial contour sequences and allows the user

to select maximum and minimum values of x, within which each contour will be cut or extended,
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smoothed (estimated) using Kriging and then resampled. The ‘Krige and Show Surface’ button

kriges all the contours resulting in a spatiotemporal surface, as shown in figure 3(b). This surface

looks similar to the waterfall display in figure 1(d). Unlike the waterfall display, this surface can be

directly used for further processing (e.g. averages, differences etc), because all the contours have

an equal number of samples on the same grid.

The spatiotemporal surfaces that are derived from the kriged contours can be used to qualita-

tively analyse a speech utterance. For example, figure 3(b) shows the spatiotemporal surface for

the word ‘golly’. Noting that the front of the tongue is on the right, the nearest contour shows

the ‘g’, which is arched in the middle [see 1 in figure 3(b)]. As time advances, the tongue flattens

and the tip rises for the ‘l’ [see 2 in figure 3(b)]. Finally the tongue arches again for ‘y’ [see 3 in

figure 3(b)].

Panel 3 of the software is for averaging different repetitions of the same utterance that have

been kriged and resampled in Part 1. Since the samples are on a regular spatial grid, the averaging

is done for different y values at each x coordinate. By averaging different y values at each x

coordinate, we are implicitly making a point-to-point correspondence of different y values which

share the same x coordinate. The result is an averaged spatiotemporal surface, and a variance

surface. Panels 4 and 5 of the software are used for comparison of two spatiotemporal surfaces

like overlaying surfaces and calculating local or global differences. These spatiotemporal surfaces

can be either individual repetitions or average surfaces (see figure 4(a) for an example of an

overlay of two such surfaces). The current version of SURFACES implements two algorithms

for calculating the difference between spatiotemporal surfaces. These include a simple difference

of y at each x and a nearest-neighbor algorithm [24] to find the shortest distance between two

surfaces. These distances are further used for calculating L2 difference norms and root mean

squared differences. More details about the algorithms used can be found in the user manual for

SURFACES (www.speech.umaryland.edu/software).
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3 Results and applications

Applications of the SURFACES software is demonstrated on two kinds of data: 1. speech data

collected to find the effect of gravity on tongue and 2. swallowing data collected to find the effects

of anterior open bite on swallowing stability.

Insert figure 4 about here

3.1 Application to speech data

This application demonstrates the use of comparative analysis between two spatiotemporal surfaces

corresponding to two different speech utterances. The goal of this study was to understand the

effects of gravity on the tongue during speech [25]. The subjects were asked to repeat the same

utterances in a supine position first and then in an upright position. Tongue contours were extracted

from the ultrasound data, kriged, averaged and visualised using SURFACES. The overlaid surfaces

in figure 4(a) shows a typical result during the utterance of the word ‘golly’. We see that the supine

surface (filled surface) is rotated backward from the upright surface (white mesh) during the entire

word. A secondary effect that can also be observed is that tongue tip is elevated in the supine

position during the ‘l’ (see arrow). The two surfaces can also be visualised as a difference image

(figure 4(b)) with the colors denoting the amount of difference between each pixel of the two

surfaces.

3.2 Application to swallowing data

This application demonstrates the use of visualising the spatiotemporal surfaces and drawing

qualitative physiological inferences from it. This experiment studied the effects of anterior open

bite on swallowing stability [26]. Figure 4(c) shows the spatiotemporal surface of a 20 cc water

swallow. We observe that the water is initially contained anteriorly, with the tongue tip depressed

and the back elevated to protect the airway. Subsequently, the tongue deforms around the bolus as

it is propelled backwards. Finally, the tongue elevates from front to back to make contact with the

palate after the water’s passage. This spatiotemporal surface can also be rotated to various views.
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Figure 4(d) shows the spatiotemporal surface of figure 4(c) as a 2-D image where the color denotes

the tongue height. The black lines in figures 4(c) and (d) separate the regions that which contain

true data from the regions that contain extrapolated data.

4 Validation of contour extension

Recall that, given the data values at specified spatial points, a Kriging solution estimates the value

at any spatial point. The Kriging estimate is the ‘best’ in the sense that it theoretically minimises

the error variance while maintaining the mean error zero. Hence it is possible to get an estimate of

the minimum error variance even before the estimation is done. But this estimate of the minimum

error variance is the predicted error variance of the model and cannot be completely trusted without

testing the model on real data [12]. The validation test on real data is more crucial in the case

of extrapolation, since the range of errors produced in extrapolation tends to be larger than in

interpolation.

4.1 Validation materials and methods

A total of 1612 tongue contours were used for the validation test. The data was collected for the

upright-supine study [25] and was in compliance with an approved human subject experiment pro-

tocol. The validation data set contained contours from 4 different words (golly, oslo, he sought, he taught),

5 different speakers and 2 different positions (upright and supine).

Portions of the tongue contour of length approximately 1 mm, 3 mm, 5 mm and 10 mm

were artificially cut (see figure 5). All the lengths are distances along the surface of the tongue

contour and not along the spatial axis (x-axis). The center region combined with the lighter gray

(lower) regions was the initial full contour. The artificial cuts were made from both the back

and the front of the tongue contour (gray) regions in figure 5). These cuts simulated the loss

of data and the apparent change in length as discussed in the introduction. Kriging was then

used to restore these cut portions (black regions in figure 5) and the error was measured as

estimated curve minus the true curve. This procedure was done for all the 1612 contours. The
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errors were also averaged separately for the front and the back of the tongue. Standard deviation

of the errors was also calculated.

Insert figure 5 about here

Insert figure 6 about here

Insert figure 7 about here

4.2 Validation results

Figure 6 shows the average errors (at each point) for the four different length cuts. The black curve

shows the error at the back of the tongue, whereas the gray curve shows the error at the front of the

tongue. The x-axis in these graphs represents the distance from the estimated point to the cut, (i.e.

the last data points on the edge of the contour represented as black circles in figure 5). Error bars

represent standard deviation. For a given length of extrapolation, the error measures in Figure 6

give an estimate of the amount of confidence that can be placed on the calculated values, depending

on whether the extrapolation is done in the front or in the back of the tongue. For example if the

contour is extrapolated to a length of 5 mm (figure 6(c)), then at a point 4 mm away from the actual

data, the expected error is around -3.2 mm in the back and around -4 mm in the front of the tongue.

Also, we note that in all cases the error is negative, which implies Kriging always underestimates

the values. This underestimation of the true curve is because, the extrapolated contour tries to

follow the global shape of the tongue contours, which in many cases, a line with a positive slope.

Therefore, in the front of the tongue, the extrapolated contour curves up, whereas in the back of

the tongue the extrapolated contour curves down. In the actual data the back of the tongue slopes

downward, whereas the front of the tongue stays flat, in most cases (see for example figure 1(c)).

Hence, we see that error at the front of the tongue is slightly, but consistently, higher than the back

of the tongue. This behaviour, however, depends entirely on the global scope of the particular

tongue surface that is being analysed.

Figure 7 represents the worst case analysis of Kriging extrapolation. Maximum expected error

is plotted as a function of the length of tongue cut for both the front and the back. The maximum
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error occurs at the point which is farthest away from the data. The maximum error and the error

variance also increase with increasing length of data loss.

4.3 Discussion

We notice that the errors are large when the amount of extrapolation is large. It is natural to

expect this trend because we are moving away from where actual data exists. The inverse distance

methods may provide a lower error measure because the values are always constrained to be within

the data values. But this lower error measure does not have a physical meaning and is only of

statistical interest. This is because the curve estimated using inverse distance methods has large

discontinuities, thus ignoring the physical reality of the tongue. Moreover the contours that are

estimated using inverse distance methods can neither be used for averaging repetitions nor for

doing comparative studies.

It is also important to note that the errors mentioned in this section are extrapolation errors.

Using Kriging with the generalized covariance function for interpolation is extremely robust and

the estimates have a very low value of errors [12] (see figure. 2(b)). So, the values estimated in

the interior of the tongue have low errors (see the central overlapping region of the gray and black

curves in figure 5).

Even though the Kriging solution is useful for visualisation, averaging and comparative analy-

sis, physiological inferences derived using these extrapolated regions should be used with caution

because the extrapolation errors. On the other hand, interpolation error is very small and hence the

quantitative measures in the non-extrapolated regions of the tongue can be used with high degree of

confidence. With regard to the issue of knowing which regions of the contours are extrapolated, the

‘SURFACES’ software has two important features: 1) When visualising a spatiotemporal surface

a mask is generated which tell the user which data points are real and which have been artificially

kriged (figure 4(c) and (d)); 2) when averaging different repetitions, rules have been implemented

so that an averaged value will be generated only at those x points where a certain number of real

(non-extrapolated) y values are available.

One of the limitations of Kriging is that its solution, like all spline-based interpolation methods,
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becomes unstable if there are two points with the same x value, but different y values. This

situation can occur when the tongue surface curls or when the tongue surface becomes exactly

vertical. In these cases, Kriging might fail to give reasonable contours. Therefore, for such cases,

the ‘SURFACES’ software implements a local contour adjustment routine. The tongue contour

is locally tweaked by changing the x-coordinate of one of the two points. Different amounts of

tweaking were tried on locally vertical contours from data sets of the upright-supine study. The

minimum of these local tweaks that provided reasonable results for all contours was ±0.3 mm.

Therefore a bias of ±0.3 mm was chosen as final amount of tweaking. This bias is within the

typical ultrasound measurement error of±0.5 mm [27]. The adjusted contour is then subsequently

kriged and visualised.

5 Conclusion

We described a method of visualising, quantifying and comparing tongue surface features from

contour sequences. Kriging was used to extrapolate the tongue surface contours that are extracted

from ultrasound image sequences of the tongue. The resulting kriged contours are then stacked and

visualised as a spatiotemporal surface. A dedicated software tool, SURFACES, which incorporates

the Kriging algorithm is presented. The tool is used for averaging and comparative analysis of

different tongue shapes. The calculation and visualisation of spatiotemporal mid-sagittal tongue

surfaces helps in understanding tongue deformations during speech and swallowing. It is hoped

that this methodology will further help in quantification and statistical comparison of complex

tongue motion.

The main problem that was overcome by this research is the lack of point-to-point correspon-

dence between the extracted tongue contours. This problem was solved by equalising the length of

the contours and resampling them on an identical grid, thus establishing a correspondence of two

points which share the same x coordinate. Ongoing research in this field (Li et. al in this issue)

is to design algorithms for estimating true point-to-point correspondences based on curvature and

other shape properties of the tongue. These correspondences can also be used for registering the

17



data in time and space. In the future, these algorithms can be combined with Kriging to further

improve the quantitative measures of tongue shapes.
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A Appendix – Kriging algorithm

Given a contour in terms of xi (spatial sampling locations) and yi (height of the point from the

top of the image), the problem is to estimate the value of a continuous function s(·) at arbitrary

spatial position x ∈ R. Kriging algorithm is applied on the contour to estimate ŝ(x). The detailed

algorithm is given below.

Algorithm 1 1. Form the data vector, y = [y1 . . . yp].

2. Select the drift function f(x) and calculate F as defined in Eq. (2).

We used the linear drift function, f(x) = [1 x]T.

3. Select the covariance function for the data, k(xa, xb) and calculate the matrix K and vector

k(x) as defined in Eqs. (3) and (4) respectively. We used the generalised covariance function,

k(xa, xb) = ‖xa − xb‖
2ln‖xa − xb‖

2.

4. Select the noise covariance matrix Σ, a p × p matrix that characterises the statistics of the

noise in the data.

In this work we assumed zero noise variance in the contour data. The contour extraction

algorithm incorporates smoothing routines and hence the output contour is already smooth

and noise free. But noise can be easily incorporated into the algorithm, but assuming white

zero mean noise with variance equal to σ mm2. Hence, Σ = σI ,where I is the p × p

identity matrix. The use of non-zero noise variance make Kriging a smoother rather than

interpolator [21].

5. Calculate the matrices

L = (K + Σ)−1

M = (FLFT)−1FL

G = KL(I − FTM)
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6. Calculate the coefficient vectors

d̂s = My

ws = K−1Gy

7. Calculate the desired estimate using

ŝ(x) = kT(x)ws + fT(x)d̂s.
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Figure 1: (a) Midsagittal tongue schematic with superimposed surface contours points. (tip of

tongue on the right). (b) Midsagittal ultrasound image with tracked surface contour points (c)

Sequence of tongue contours in time overlaid on each other. (d) Waterfall display of contours for

the word ‘golly’.
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Figure 2: Comparison of Kriging with inverse square distance weighting and cubic splines: (a)

Extrapolation using cubic splines and inverse square distance weighting; note the swing in the case

of cubic spline(cross) and the unsmooth contour produced by inverse square distance weighting

methods. (b) Extrapolation using Kriging; note the improved performance of Kriging at the back

of the tongue.
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(a) (b)

Figure 3: (a) A snapshot of the SURFACES software and (b) a spatiotemporal surface of the word

‘golly’.
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(a) (b)

(c) (d)

Figure 4: Applications of SURFACES: (a) Overlay of 2 spatiotemporal tongue surfaces of the word

‘golly’. Mesh surface was spoken in ‘upright’ position and the filled surface in ‘supine’ surface.

(b) Difference between the two spatiotemporal surfaces in form of an image. (c) Spatiotemporal

surface of a 20cc swallow. The water is contained in front of tongue, then propelled backwards,

followed by tongue surface elevation after the water’s passage. (d) Visualization of the swallow as

an image with gray scale denoting height. Note in (c) and (d) the black lines separate the regions

that contain real data from the regions that contain extrapolated data.
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Figure 5: Validation experiment: The center line along with the lower lines (gray) on either side

is the actual tongue contour. The edges are artificially cut in order to see how Kriging performs

in extrapolation. The last data points on the edge of the contour are represented as black circles.

The extrapolated lines (black) are the contours that Kriging estimated. The difference between the

black and gray regions is measured as error.
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Figure 6: Validation Results: Mean errors in estimation when the length of tongue contour cut is

(a) 1 mm (b) 3 mm (c) 5 mm and (d) 10 mm. The error bars represent standard deviation. The

x-axis denotes distance along the surface of the tongue, not the distance along the spatial axis (x-

axis). The gray curves denote the errors in the front of the tongue and black denotes the errors in

the back of the tongue.
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Figure 7: Maximum Errors: Maximum expected errors in estimation as a function of the length of

tongue cut.
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