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Multimodal Registration via Mutual Information
Incorporating Geometric and Spatial Context

Jonghye Woo, Member, IEEE, Maureen Stone, and Jerry L. Prince, Fellow, IEEE

Abstract— Multimodal image registration is a class of
algorithms to find correspondence from different modalities.
Since different modalities do not exhibit the same characteristics,
finding accurate correspondence still remains a challenge. To deal
with this, mutual information (MI)-based registration has been
a preferred choice as MI is based on the statistical relationship
between both volumes to be registered. However, MI has some
limitations. First, MI-based registration often fails when there
are local intensity variations in the volumes. Second, MI only
considers the statistical intensity relationships between both
volumes and ignores the spatial and geometric information about
the voxel. In this work, we propose to address these limitations by
incorporating spatial and geometric information via a 3D Harris
operator. In particular, we focus on the registration between a
high-resolution image and a low-resolution image. The MI cost
function is computed in the regions where there are large spatial
variations such as corner or edge. In addition, the MI cost
function is augmented with geometric information derived from
the 3D Harris operator applied to the high-resolution image.
The robustness and accuracy of the proposed method were
demonstrated using experiments on synthetic and clinical data
including the brain and the tongue. The proposed method
provided accurate registration and yielded better performance
over standard registration methods.

Index Terms— Multimodal image registration, mutual
information, Harris operator.

I. INTRODUCTION

MULTIMODAL image registration is a basic yet
important operation for many applications. Clinical

research studies often involve large numbers of volumes taken
from multiple modalities. Different modalities provide diverse
features, which can be used in a variety of theoretical and
practical applications, such as relating function to anatomy or
image guided surgery [1], [2].

Multimodal image registration still remains a challenge
partly because different modalities to be registered exhibit
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Fig. 1. Examples of multimodal images: (a) an MR-T2 image of the brain,
(b) a high-resolution MRI (hMRI) of the tongue that was acquired at rest,
(c) a PET image of the brain, and (d) the first time frame of cine-MRI of the
tongue. These images differ considerably in spatial resolution.

different characteristics. For instance, the widely used modali-
ties, structural imaging, such as Computed Tomography (CT),
and high-resolution magnetic resonance imaging (MRI)
(see Fig. 1(a), (b)) depict detailed anatomical information.
Functional or dynamic imaging, such as Positron Emission
Tomography (PET) (see Fig. 1(c)), Single Photon Emission
Computed Tomography (SPECT), functional MRI (fMRI)
contain information about changes in blood flow, metabolism,
and regional chemical composition. Cine-MRI (see Fig. 1(d))
provides surface motion of anatomical structures. The ben-
efits of using multimodal data have created a need for
the development of highly accurate and robust multimodal
image registration. In particular, multimodal image registra-
tion of high-resolution images (e.g., high-resolution MRI)
with low-resolution images (e.g., PET) is often needed.
Such registration is the main interest of this paper, as our
method specifically exploits geometric information in the
higher resolution image in the computation of the similarity
measure.

Multimodal image registration is a class of algo-
rithms to find correspondences between multiple datasets
from the same subject, acquired using different imaging
modalities [3]. The task of aligning two images is cast as an
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Fig. 2. When the two circles in (a) are to be aligned, the conventional MI
objective function in (b) fails to show a peak at the correct point of alignment,
whereas the proposed method in (c) has the desired peak. Note that the values
in (b) and (c) are plotted with respect to the x and y translation of the dark
circle (top (a)) against the gray circle (bottom (a)).

optimization problem: a common approach to registration is
to deform one of the images so as to maximize its similarity
to the other image while maintaining a “smoothness” in the
estimated deformation field. Most of the similarity measures
can be classified into two categories [4]: feature-based and
intensity-based. The former usually requires four steps: (1) fea-
ture detection, (2) feature matching, (3) transform model
estimation, and (4) resampling. In general, feature-based meth-
ods are computationally efficient compared to intensity-based
methods; but manual intervention is often required to improve
accuracy and efficiency.

Intensity-based methods have been shown to be more accu-
rate than feature-based methods [5], but special assumptions
on the intensities of the images are often required in order to
achieve successful registration. For instance, while unimodal
image registration is based on the assumption that correspond-
ing pixels have similar intensity values, the same assumption
does not hold in multimodal registration problems. This is
because the two modalities may assign different intensities
to the same structure. Mutual information (MI), therefore,
has become the established intensity similarity measure in
multimodal registration because it accommodates different
intensities between the modalities provided that they are
relatively consistent within each modality [6], [7]. MI has been
extensively used for many applications including diagnosis [8],
surgical planning [9], and radiation therapy [10].

Although MI is considered to be the gold standard similarity
measure for multimodal image registration, there are two
problems with the traditional method. First, the performance
of MI degrades when there are local intensity variations;
this happens because the joint histogram computation is
adversely affected [11], [12]. Second, the conventional sim-
ilarity measure only incorporates intensity information, which
means that the spatial information that may provide additional
cues about the optimal registration is entirely ignored [13].
Fig. 2 illustrates the problem with local intensity variations
and demonstrates the improvement provided by our proposed
approach.

Several previous methods incorporated spatial information
in the computation of MI. Pluim et al. [13] combined spatial
information by multiplying the MI with an external local gradi-
ent, and both gradient magnitude and orientation were incorpo-
rated into the calculation of MI. Rueckert et al. [14] proposed
second-order MI to the problem of 2D registration by using a
4D joint histogram that considered the six nearest neighbors

of each voxel to calculate MI. However, Rueckert et al. [14]
required a large number of samples to compute the high-
dimensional histogram, and therefore is not easily extended to
3D for computational reasons. As an extension of the second-
order MI, Russakoff et al. [15] performed regional MI taking
into account both corresponding pixels and their neighbors.
This method also used a high-dimensional histogram, which
may not be reliable when the number of samples is small.
Yi et al. [16] proposed the inclusion of spatial variability
via a weighted combination of normalized mutual informa-
tion (NMI) and local matching statistics. Loeckx et al. [17]
introduced conditional MI, which incorporates both intensity
and spatial dimensions to express the location of the joint
intensity pair. Zhuang et al. [18] proposed to unify spatial
information into the computation of the joint histogram. This
method used a hierarchical weighting scheme to differentiate
the contribution of sample points to a set of entropy measures,
which are associated to spatial variable values. In related
developments, Myronenko et al. [19] presented a novel similar-
ity measure, the residual complexity, that accounts for complex
spatially-varying intensity distortions in mono-modal settings.
However, this approach may not work well in multi-modal
settings.

Our work shares the spirit of these past works in the sense
that we include spatial information in the computation of MI,
thereby incorporating both spatial and geometric information.
However, one of the main contributions of this work is that our
method involves a new approach that specifically exploits the
higher resolution image. Specifically, we compute a structure
matrix at each voxel and use the 3D Harris operator to decom-
pose the image into three disjoint and geometrically distinct
regions. These classes were then used to determine the relative
contribution of each voxel’s intensity in the computation of the
joint histogram. In this way, geometric structure from the high-
resolution image influences the matching computation between
the two images. A preliminary version [20] of this method was
reported. Here we report the completed algorithm design and
provide new validations on both synthetic and in vivo data
including the tongue and the brain.

The remainder of this paper is organized as follows.
Section II provides a background about maximization of
MI and Harris corner detector. The proposed registration
method with the 3D Harris operator is described in Sec. III,
followed by experimental results presented in Sec. IV.
Finally, a discussion and concluding remarks are given in
Secs. V and VI, respectively.

II. PRELIMINARIES

A. Maximization of Mutual Information

In this section, we describe the maximization of MI for
multimodal image registration. We first define terms and
notation used in this work. The images I1 : �1 ⊂ R

3 → R

and I2 : �2 ⊂ R
3 → R, defined on the open and

bounded domains �1 and �2, are the template and target
images, respectively. Given two images, a deformation field
is defined by the mapping u(x; μ) : �2 �→ �1. In our work,
u is a B-spline transformation with associated parameters
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μ = (μ1, μ2, μ3, · · · ), containing the B-spline coefficients.
The goal of registration is to find a deformation field at each
pixel location x such that the deformed template I1(u(x))
aligns the underlying anatomy as closely as possible with
I2(x) satisfying the given criterion. Since I1 and I2 are
considered to be different modalities, we focus on the MI cri-
terion. The main idea is to find the deformation field û
that maximizes the mutual information M contained in the
distribution of paired image intensities of the aligned images.
Accordingly,

û = arg max
u

(M(I1(u(x)), I2(x))), (1)

where

M(I1(u(x)), I2(x))

=
∫ ∫

pu(i1, i2) log
pu(i1, i2)

pI1(i1)pI2(i2)
di1di2 . (2)

Here, i1 and i2 are the image intensity values in I1(u(x))
and I2(x), respectively, and pI1(i1) and pI2(i2) are their
marginal probability distributions while pu(i1, i2) is their joint
probability distribution. All densities are computed using a
Parzen window approximation [21] and the joint density is
computed only over the overlap region.

B. Harris Corner Detector

The Harris corner detector [22] was first introduced to
detect corner features that contain high intensity changes in
both the horizontal and vertical directions. The Harris corner
detector is a well established technique using linear filtering
of an image. Given an image I , the autocorrelation matrix
of the point l = (x, y) in the neighborhood N of l is
given by

N (l) =
⎛
⎝

∑
m∈N

I 2
x (m)

∑
m∈N

Ix (m)Iy(m)
∑

m∈N
Ix (m)Iy(m)

∑
m∈N

I 2
y (m),

⎞
⎠ (3)

where Ix and Iy denote the partial derivatives of I in the
x and y directions, respectively.

The Harris corner indicator H2 is then given by

H2 = det(N ) − r(trace(N ))2, (4)

where r is an arbitrary constant.

III. PROPOSED APPROACH

In this section, we describe our proposed method. Our
method is based on an iterative framework of computing MI
incorporating spatial information and geometric cues. The
underlying idea is to split the image into a set of non-
overlapping regions using the 3D Harris operator derived
from the higher resolution image and to perform registra-
tion on spatially meaningful regions. Additionally, we exploit
structural information describing the gradient of the local
neighborhood of each voxel to define structural similarity for
MI computation.

A. Volume Labeling Using 3D Harris Operator

In this work, we extend the 2D Harris detector to three
dimensions so that it can be used to define regions over which
MI is more heavily weighted. The Harris operator is derived
from the local autocorrelation function of the intensity. The
autocorrelation function at a point (x , y, z) is defined as

f (x, y, z) =
∑

p

∑
q

∑
r

w(p, q, r)

× [I (p+x, q+y, r +z)− I (p, q, r)]2, (5)

where I (·, ·, ·) is the 3D image, (p, q, r) denote a neigh-
borhood of (x, y, z) in the Gaussian function w(·, ·, ·)
centered on (x, y, z). Using a first-order Taylor expansion,
I (p + x, q + y, r + z) is approximated by

I (p + x, q + y, r + z)

≈ I (p, q, r) + x Ix (p, q, r) + y Iy(p, q, r) + z Iz(p, q, r).

(6)

f (x, y, z) can then be given by

f (x, y, z)=
∑

p

∑
q

∑
r

w(p, q, r)

× [x Ix(p, q,r)+y Iy(p, q,r)+z Iz(p, q,r)]2 (7)

f (x, y, z) ≈
∑

p

∑
q

∑
r

w(p, q, r)

×
⎧⎨
⎩
⎡
⎣Ix (p, q, r)Iy(p, q, r)Iz(p, q, r)

⎡
⎣ x

y
z

⎤
⎦

⎤
⎦
⎫⎬
⎭

2

= [x y z] C(x, y, z)

⎡
⎣ x

y
z

⎤
⎦. (8)

Here the local structure matrix C(x, y, z), which captures the
intensity structure of the local neighborhood, is defined as

C(x, y, z)=
∑

p

∑
q

∑
r

w(p, q, r)

⎛
⎝ I 2

x Ix Iy Ix Iz

Ix Iy I 2
y Iy Iz

Ix Iz Iy Iz I 2
z

⎞
⎠ (9)

where Ix , Iy , and Iz denote the partial derivatives of I in
the x , y, and z directions, respectively. In analogy to the
2D Harris operator [22], we define the 3D Harris operator as

H3 = det(C) − k(trace(C))3, (10)

where k is an arbitrary constant. Each voxel can then be
classified as one of three types using a threshold T and the
following definitions

• Type 1: H3 ≥ T , voxel has significant local variation
• Type 2: H3 ≤ −T , voxel has moderate local variation
• Type 3: −T ≤ H3 ≤ T , voxel has small local variation
We assume that Type 1 and Type 2 regions have more

structural and characteristic information compared to Type 3
(homogeneous) region to calculate local statistics. Thus we
use Type 1 and Type 2 regions to calculate MI. One example
result of the voxel labeling is shown in Fig. 3. It is worth noting
that we perform the 3D Harris operator on higher resolution
volumes such as hMRI only because the higher resolution
image has more detailed anatomical information.
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Fig. 3. Examples of voxel labeling using the 3D Harris operator. (a) An axial image of hMRI. In (b)–(d), white voxels represent (b) Type 1 - high variability,
(c) Type 2 - moderate variability, and (d) Type 3 - small variability.

B. Mutual Information Using the Local Structure Matrix

As shown in Eq. (2), MI provides a measure of image
similarity using only the marginal and joint probability den-
sities of the image intensities. Here, we incorporate spatial
and geometric information into the calculation of MI by
computing a weighted joint distribution similar to the work
by Luan et al. [23] as follows

pCu (i1, i2)

= 1

|V |
∫

V
γ (x)ϕ

(
i1 − I1(u(x))

ρ

)
ϕ

(
i2 − I2(x)

ρ

)
dx,

(11)

where ϕ is a Gaussian kernel, the overlap region
V = �2 ∩ u−1(�1), ρ controls the width of window, and
γ (x) is a weighting function that is large when local structure
matrices are similar and is small otherwise. Specifically, we
define this weighting function as

γ (x) = exp(−�(Ci1(x), Ci2 (x))

m
) , (12)

where �(Ci1(x), Ci2(x)) is a distance between two matrices,
m is a normalization constant, and Ci1 (x) and Ci2 (x) are
the local structure matrices of the corresponding pixels in
I1(u(x)) and I2(x), respectively.

Since local structure matrices do not live in a vector space,
the distance function � cannot be defined by a conventional
Euclidean metric. The matrices are symmetric and positive
semidefinite (like covariance matrices), however, and therefore
belong to a connected Riemannian manifold that is locally
Euclidean [24]. Accordingly, we can define the distance
between two structure matrices as

�(Ci1(x), Ci2(x)) =
√√√√ N∑

n=1

(ln λn(Ci1(x), Ci2 (x)))2 , (13)

where N is the number of rows and columns in each matrix
and λn are the generalized eigenvalues of Ci1(x) and Ci2 (x)
defined by

λnCi1 xn = Ci2 xn, n = 1, . . . , N, (14)

where xn , n = 1, . . . , N , are the corresponding generalized
eigenvectors. This definition of distance satisfies the metric

Fig. 4. Distance calculated between structure matrices in hMRI and
cine-MRI. (a) 2D slice of cine (left) and high-resolution (right) MR images.
(b) First order derivatives with respect to x and y axes of 2D cine (top) and
high-resolution (bottom) MR slices. (c) Distance between structure matrices
defined in Eq. (13).

properties including symmetry, positivity, and the triangle
inequality. An example of this distance, computed between
aligned 2D cine-MRI and hMRI images, is shown in Fig. 4(c).
This shows that the distance metric is small when there are
regions of high geometric similarity, such as edges.

We write a modified MI criterion using the above weighting
scheme as follows

MC(I1(u(x)), I2(x))

=
∫ ∫

pCu (i1, i2) log
pCu (i1, i2)

p̂I1(i1) p̂I2(i2)
di1di2 , (15)
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where p̂I1(i1) and p̂I2(i2) are recomputed based on pCu (i1, i2)
as in [25]. Using this modified MI, the local structure matri-
ces provide a geometric similarity measure while the image
intensities continue to provide an appearance measure, thereby
allowing us to find correspondence more reliably and address
the limitation of the traditional MI-based registration. In sum-
mary, our registration approach seeks to maximize the image
similarity given by

D(I1(u(x)), I2(x)) = MC(I1(u(x)), I2(x)), x ∈ M(x),

(16)

where M(x) is a mask comprising only the Type 1 and Type 2
voxels in the higher resolution image.

C. Transformation Model

Having defined an image similarity, we must now define a
model for the spatial transformation that we will use. Here we
follow a standard model [26],

h(x) = h1(x) + h2(x), (17)

where h1(x) and h2(x) are affine and deformable regis-
trations, respectively. Affine registration accounts for large
displacements including rotations, translations, and scalings.
Deformable registration accounts for the finer details at a local
level. We use free-form deformations (FFD) based on uniform
cubic B-splines [26] to implement deformable registration.
Therefore h2(x) can be written as the 3D tensor product of
1D cubic B-splines,

h2(x) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ci+l, j+m,k+n ,

(18)

where c denotes the control points and i , j , and k represent
the index of the control point.

The B-spline transformation model has three desirable prop-
erties for the present application. First, estimated deformation
field is easily regularized by controlling the control point
separation [26]. We use this property to balance accuracy
versus smoothness of the resulting deformation field. Second,
B-splines are separable in multiple dimensions, providing
computational efficiency. We refer the reader to [25] and [27]
for implementation details. Finally, optimization is inherently
local, since changing the location of a single control point
modifies only a local neighborhood of control point [28]. This
permits additional computational efficiency since regions that
have converged do not need further updating.

D. Optimization

The energy functional is minimized using a gradient descent
method [29] defined by

μk+1 = μk − ak g(μk), (19)

where g(μk) is the derivative of the cost function evalu-
ated at the current position μk . From our weighted joint
distribution, we first re-compute the marginal probability

distribution, p̂I1(i1). In calculating the gradient of the mod-
ified MI, we follow the work [25], [27]. We first derive a
Taylor expansion of the modified MI as given by

MC(μ) = MC(ν) +
∑

i

∂MC(ν)

∂μi
(μi − νi )

+1

2

∑
i, j

∂2MC(ν)

∂μi∂μ j
∂μ j (μi − νi )(μ j − ν j ) + · · ·

(20)

We simplify the above eqnarray by ignoring all terms above
second-order as in [25]. Here the quadratic model yields the
optimal solution when the Parzen window is a B-spline of
degree m � 3 [25].

We then calculate the gradient of the cost function, which
is necessary for its efficient minimization. The gradient of the
modified MI with respect to the parameter μ is given by

∇MC =
[

∂MC

∂μ1
,
∂MC

∂μ2
, · · ·

]
. (21)

A single component of the gradient is found by

∂MC

∂μ
= −

∫∫
∂pCu (i1, i2)

∂μ
log

pCu (i1, i2)

p̂I1(i1)
di1di2. (22)

Additionally, a multi-resolution scheme is used to represent
coarse-to-fine details of both volumes for fast and robust
registration [30].

IV. EXPERIMENTS AND RESULTS

In this section, we present results of experiments on
synthetic data, the brain data, and the tongue data, which
together demonstrate the performance of the proposed method.
Software was implemented using C++ with the Insight
Segmentation and Registration Toolkit (ITK) [31], an open
source library. For comparison, we used the MI registration
algorithm described in Mattes et al. [25], which was also
implemented in ITK. All experiments were performed on
an Intel i7 CPU with a clock speed of 1.74 GHz and
8 GB memory.

A. Synthetic Data

In this experiment, we compared the performance of the
proposed method to the conventional MI method on a pair
of synthetic images at different noise levels, similar to the
work by Fan et al. [32]. The synthetic images are shown in
Figs. 5(a) and 5(b). The images in Figs. 5(c) and 5(d) are
generated to test robustness of the methods against noise and
spatial variation. In Fig. 5(c) the object is noisy and spatially
variant; the background is spatially variant. The pattern is
reversed in Fig. 5(d).

Fig. 6 shows the cost values of MI for the proposed method
as a function of horizontal and vertical shifts ranging from
−20 to 20 pixels. When Figs. 5(a) and 5(b) were used
as template and target images, respectively, both methods
found correct alignments as illustrated in Figs. 6(a) and 6(d).
However, the MI failed to register as shown in Fig. 6(b) when
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Fig. 5. Synthetic images: (a) and (b) are original images and backgrounds. (c) and (d) show spatial gradient or gradient plus noise imposed on the figure or
on the background (Image size is 210×300).

Fig. 6. Comparison between MI (top row) and proposed method (bottom row) on synthetic datasets. (a) and (d) represent the cost value plots between
Figs. 5(a) and 5(b) as a function of horizontal and vertical shifts. (b) and (e) show the cost value plots between Figs. 5(c) and 5(d). (e) and (f) show the joint
histograms plotted after performing registration with initial misalignments of 5 and 5 pixels in x and y axes.

Figs. 5(c) and 5(d) were used as template and target images,
respectively. This is shown more clearly from Figs. 6(c)
and 6(f) that the proposed method provided less dispersion
of joint histogram compared to the MI after registration of
Figs. 5(c) and 5(d) with initial misalignments of 5 and 5
pixels in x and y axes, respectively. The proposed method
has good performance on both the noisy images as well as
on the noiseless pair. It is observed from these examples
that the proposed method provided robust and accurate results
in the presence of noise and spatial variation. Although the
intensity values inside the object are worsened due to the
noise and spatial variance, the proposed method exploited
the information from spatially salient regions, enabling the
proposed method to find correct alignment and locating the
peak value in the center as illustrated in Fig. 6(e). In these
experiments, the number of histograms were set to 50 and
80% of the sample size in order to calculate MI. In this case,

the 2D Harris operator was used to extract corner and edge
information by setting k = 0.05 and T = 800.

Additional experiments were carried out to test robustness
against different noise levels (see Figs. 6(c) and 6(d)) and dif-
ferent spatial variations inside the object and background (see
Fig. 7), respectively. To generate the noise, we used Gaussian
noise with standard deviation varied from 10% to 50% of
the pixel value. Multiple registrations were performed with
different initial positions ranging from −6 to 6 pixels in steps
of 3 pixels in x and y directions (25 combinations in total per
one noise level). A translation spatial transformation was used
in these experiments and the root-mean-square (RMS) errors
between corrected displacements and initial positions were
used as a metric to measure the accuracy of the registration.
Registration was considered to be a success if the RMS
error was less than 3 pixels. Table I and Table II list the
percentage of successful registrations for each method with



WOO et al.: MULTIMODAL REGISTRATION VIA MI INCORPORATING GEOMETRIC AND SPATIAL CONTEXT 763

Fig. 7. Synthetic images with different spatial variations: (a) low spatial
variation, (b) intermediate spatial variation, and (c) high spatial variation
(Image size is 210 × 300).

TABLE I

SUCCESS RATE FOR BOTH METHODS ON

SYNTHETIC DATA (NOISE)

TABLE II

SUCCESS RATE FOR BOTH METHODS ON SYNTHETIC

DATA (SPATIAL VARIATION)

different noise levels; Table III and Table IV show statistics of
RMS error after registration for each method. The performance
of the registration using the MI deteriorated as the noise or
spatial variation were added whereas the proposed method
demonstrated more robust and superior performance in these
experiments.

B. In Vivo Brain Data

1) RIRE Data: We used the publicly available brain data
from the Retrospective Image Registration Evaluation (RIRE)
project [34] to objectively evaluate the performance of the
proposed method. The RIRE project provides ground truth
transformation to evaluate rigid registration. In our experi-
ments, we focus on the registration between (rectified) MR-T2

TABLE III

RMS ERROR (PIXEL) AFTER REGISTRATION FOR BOTH

METHODS ON SYNTHETIC DATA (NOISE)

TABLE IV

RMS ERROR (PIXEL) AFTER REGISTRATION FOR BOTH METHODS

ON SYNTHETIC DATA (SPATIAL VARIATION)

and PET datasets similar to [33]. The RIRE project provides
one training data and seven testing data, five of which only
have PET images. Thus we use five datasets for PET-MR
registration (i.e., patient 001, patient 002, patient 005, patient
006, and patient 007). The voxel size is 1.25 × 1.25 × 4 mm3

for MR, and 2.59 × 2.59 × 8 mm3 for PET images.
2) Evaluation: In order to compare different statistical

similarity measures, we used the results reported in [33] as
they used the same data. Our method was compared with
several entropy-based measures, including MI, normalized
MI (NMI), entropy correlation coefficient (ECC), cumulative
residual entropy correlation coefficient (CRECC), their
modified overlap invariant measures (MMI, MECC,
MCRECC) [35], and a learning based method [33]. Please
note that we did not reimplement these algorithms but used
the results in [33]. The accuracy of the registration was
evaluated using target registration error (TRE) [36] provided
by the RIRE project website. To obtain TRE, the physical
coordinates of the transformed points were uploaded to the
RIRE website, thus automatically computing and posting
TRE on the website.1 In our experiments, we set the number
of histograms to 50, and used the entire volume as the sample
size in order to calculate the modified MI. In addition, the
3D Harris operator was used to label the voxels by setting
k = 0.01 and T = 50, 000, 000. These parameters were set
empirically, but the same parameters were used throughout
experiments using the RIRE data. The TRE results are shown
in Table V. Our proposed method outperformed the other
methods in terms of mean TRE. However, the worst case
TRE of the learning based method provided a better result
compared to the proposed method.

C. In Vivo Tongue Data

By using hMRI when the tongue is at rest, one can visualize
details of this muscle anatomy (see Fig. 1(c)). The motion of

1http://www.insight-journal.org/rire/
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TABLE V

PET-MR REGISTRATION ERRORS USING THE RIRE DATA

Fig. 8. Anatomical landmarks used for validation shown in one example
case with images from hMRI (a) and images from a cine-MRI (b). We have
obtained independent sets of anatomical landmarks from two expert observers.
Red crosses indicate the positions of landmarks, including tongue tip, lower
lip, and posterior pharyns.

the tongue during speech can be fast and quite complex, how-
ever, and unlike the heart, it is not periodic by default. These
facts make tongue motion imaging during speech quite chal-
lenging. As a consequence, cine magnetic resonance images
(cine-MRIs), are captured at movie frame rates but with low
spatial resolution (see Fig. 1(d)). Since hMRI captures the
structure of the tongue and cine-MRI captures the motion of
the tongue, these two MRI “modalities” offer complementary
information about the tongue. Our approach allows to further
enhance their utility by registering the hMRI data, captured in
a resting position, to the cine-MRI data.

1) Subjects and Task: Nine normal native American English
speakers were subjects in this experiment. The speech task
was “a geese”. The word was chosen because the motion is
complex. The tongue moves from a neutral tongue shape in “a”
to a high back tongue position for “g” which is followed by
forward motion into “ee” and tongue body lowering for “s”.
In addition, this word does not involve jaw opening, which
would assist tongue motion. Therefore the functional load, cre-
ation of different vocal tract configurations, is placed entirely
on the tongue.

2) Recording and Procedure: Both types of MRI datasets—
hMRI and cine-MRI—were recorded in the same session
using a head and neck coil. Cine-MRI datasets were collected
with a 6 mm slice thickness and had an in-plane resolution

Fig. 9. Synthetic simulation using tongue data. (a) high-resolution MRI,
(b) artificially deformed downsampled hMRI, and (c) the ground truth
deformation. The maximum displacement of the ground truth deformation
is 15 mm in this case.

of 1.875 mm/pixel. 14 axial slices were acquired. hMRI
datasets were 3 mm thick with an in-plane resolution of
0.94 mm/pixel. 24 axial slices were acquired. The subjects
were required to remain still from 1.5 to 3 minutes for each
plane. The datasets were aligned such that one cine slice
contained two hMRI slices. University of Maryland MRI
facilities have an MRI trigger system that uses acoustic cues to
synchronize speech utterance repetitions with MRI acquisition.
The protocol for synchronized auditory cueing is based on
the method of Masaki and colleagues [37]. Cine-MRI datasets
were collected in multiple planes, while the subject repeated
speech tasks (“a geese”) to the beat of the auditory rhythm cue.
To collect the datasets, the subject repeated the speech task
4 times per slice. A 15-minute training protocol, with feedback
from the experimenter, was developed using the subjects. Due
to the training, excellent cine images are obtained for naive
subjects and patients even with long repetition sets. Recording
time can take up to 1 hour and 15 minutes.

3) Evaluation on Simulated Tongue Data: We first val-
idated the accuracy of the proposed method on simu-
lated tongue MR images. Low-resolution MR images were
generated by downsampling the hMRI by a factor of 2.
Low-resolution MR images were then deformed artificially
using randomly generated transformations by setting maxi-
mum displacements from 5 to 15 mm. In order to ensure
regularity, the transformations were smoothed by a Gaussian
kernel with standard deviation σ = 2. Fig. 9 shows an example
of the pair of hMRI and a deformed low-resolution MR image,
and the ground truth deformation, respectively.

Registration of hMRI (template) with the low-resolution
MR image (target) was then performed using MI-based regis-
tration and the proposed method. The obtained deformations
were compared with the ground truth deformations using the
RMS error. We tested the two methods on three subjects and
the results are shown in Table VI. It is clearly observed from
the results that the proposed approach offers more accurate
registration than the MI-based method in all three cases.
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TABLE VI

RMS ERROR (mm) BETWEEN GROUND TRUTH AND RECOVERED

DEFORMATIONS USING SYNTHETIC TONGUE SIMULATION

4) Evaluation on Real Data: Registration was performed
on the two static volumes: (1) the first time frame of the
axial cine-MRI that was acquired during speech task of
“a geese” and (2) the axial hMRI volume that was acquired
at rest. We used first time frame of cine-MRI and hMRI
for our registration since first frame of cine-MRI is neutral
(schwa position) and therefore the position is close to the
resting tongue position found in the hMRI data. The regis-
tration methods used affine registration as an initialization,
followed by the deformable registration using the proposed and
MI-based method using FFD. In our experiments, we set the
number of histograms to 30, and used 80% of the entire
volume as the sample size. We used control point spacings
of 16 mm in each axis. For the 3D Harris operator, we set
k = 0.001 and T = 50, 000, 000. The parameters were chosen
empirically to provide the best registration performance. The
method stops when the movement is less than 0.001 mm or
iteration reaches the predefined iteration number 200 in both
methods.

To evaluate the accuracy and robustness of the pro-
posed method, we performed two experiments on the nine
pairs of 3D axial MRI volumes described above. The first
experiment assessed the accuracy of the registration method
using TRE. Two expert observers independently selected three
corresponding anatomical landmarks from each volume
including tongue tip, lower lip, and posterior pharynx as illus-
trated in Fig. 8. Table VII lists the mean and standard deviation
of TRE and inter-observer variability using both methods.
In all cases, the original data misalignments were larger than
3.5 voxels. Affine registration and further deformable registra-
tion using MI and proposed method reduced the mean TRE to
2.7 and 2.1 voxels, respectively (p < 0.05). The TRE results
show that the proposed method provided accurate results
compared to the traditional MI-based method. In addition,
the TRE results obtained from the proposed method were
not much different from the observer variability (p = NS).
Fig. 10 shows one result of the first experiment. It is apparent
in the figure that the proposed method has better alignment.

The second experiment further demonstrated the perfor-
mance of the registration method. Three different levels
of intensity non-uniformity (bias) were generated includ-
ing small (20%), medium (40%), and large (60%) bias

fields (see Fig. 11). In these experiments, we also used TRE
to measure the performance of the methods. As shown in
Table VIII, the results of the proposed method were superior
to the MI-based registration and were also robust against the
bias fields.

V. DISCUSSION

We used a 3D Harris operator to characterize and label
the tissue into three disjoint regions and the local structure
matrix was used in the calculation of a modified MI image
similarity criterion. It is possible to use other image descrip-
tors to label the tissue. For example, scale invariant feature
transform (SIFT) [38] or maximally stable extremal
regions (MSER) [39] are likely to give similar pixel labeling
results. However, the local structure matrix defined at each
voxel offers information about the local geometry, which we
were able to exploit in a new weighted MI image similarity
computation. As demonstrated in the synthetic experiments,
the capture range may not be wide, compared to the MI. How-
ever, in practice, we used affine registration as an initialization
to further perform deformable registration and therefore the
capture range did not affect the results greatly.

Multimodal image registration has been explored in great
detail (see [3], [4], [11] and references therein); however,
only a few methods have been proposed for tongue images.
Yang and Stone [40] proposed to reconstruct 3D tongue
motion by aligning temporal data from ultrasound images.
Li et al. [41] performed tongue motion averaging to provide
best representation of speech motion from several repeti-
tions. Singh et al. [42] proposed to register multiple swal-
lows for generating high temporal resolution in MRI videos.
Aron et al. [43] investigated registration of multimodal data
including ultrasound, and stereovision data within MRI.

The tongue has three orthogonal muscle fiber directions
and extensive fiber inter-digitation and it has no bones or
joints. Therefore MRI is an excellent tool because it images
soft tissue very well; however, there are challenges. hMRI,
collected when the tongue is at rest, can visualize the muscle
anatomy in great detail, as shown in Fig. 1(b). Cine-MRI
captures tongue motion at movie frame rates, providing good
temporal resolution, but with low spatial resolution, as shown
in Fig. 1(d). Moreover, these two modalities are different
enough that their registration is more akin to multimodal
registration than unimodal registration. Our 3D registration
approach successfully registered the two datasets. A second
challenge is that the motion of the tongue during speech
can be fast and quite complex unlike the heart and it is not
periodic by default. These facts make high quality tongue
image analysis during speech quite challenging. Nonetheless,
our method provided registered complementary information:
temporal and spatial.

The current study registered cine-MRI to hMRI. This is
useful for comparing multiple subjects in the same spatial
coordinate space, such as, high-resolution atlas space [44].
In the future, registration from hMRI to cine-MRI is planned.
The goal is to incorporate high-quality muscle definition
into cine-MRI to better interpret tongue muscle motion from
cine-MRI data.
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Fig. 10. One example of the results: (a) template image (hMRI) (b) volume labeling of the template image using the Harris operator, (c) a resulting image
using MI-based registration, (d) a resulting image using the proposed method and (e) the target image (cine-MRI). The red arrows show that (d) and (e) are
better aligned than (c) and (e) in terms of vocal tract edge.

Fig. 11. Different non-uniformity fields: (a) original image, (b) small bias field (20%), (c) medium bias field (40%), (d) large bias field (60%).

TABLE VII

REGISTRATION ERRORS AND OBSERVER VARIABILITY (VOXEL)

TABLE VIII

REGISTRATION ERRORS IN DIFFERENT NON-UNIFORMITY FIELDS (VOXEL)

To validate the proposed method, experiments with both
synthetic and in vivo human datasets including the tongue
and the brain were performed. Experiments with synthetic
datasets allowed evaluation of the accuracy and robustness
of the proposed method to different noise levels. Experi-
ments with human tongue datasets allowed the evaluation
of both accuracy and robustness in images with different
magnitudes of intensity non-uniformity. Experiments with
brain datasets allowed to comparisons of several entropy-
based measures used in [33] and [35] and allowed to objec-
tively compare the similarity measure itself. This is because
the evaluation focused on the rigid transformation and thus
the TRE results were independent of the choice of the

transformation models or different regularization methods.
It was observed that the proposed method provided supe-
rior performance even when noise level or the intensity
non-uniformity became stronger. Also the proposed method
outperformed entropy-based similarity measures such as MMI,
ECC, MECC, CRECC, MCRECC [35], and the learning based
method [33].

In our method, the choice of T determines how much
anatomical detail is included in the registration, which will be
different from one application to another. In our case, anatom-
ical details are captured in Type 1 and 2 regions and Type 3
captures a homogeneous region. In the registration process,
Type 1 and 2 regions are combined; therefore we chose
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T based on the Type 3 homogeneous region. Once we set T,
we used the same parameters within the same experiments as
the anatomical details are similarly presented in the images.
The choices of the associated weights of Type 1 and 2 and the
parameters for the Harris operator are subject to modification.
Although in this work we used spatially meaningful regions
(i.e., Type 1 and 2) with the same weights, this can be
improved by a mechanism to incorporate importance of each
region in an adaptive manner such as the work by Yi et al. [16].

The choice of the width of the Parzen window in estimating
MI could influence the registration performance. While a
large width will over-smooth the density estimation and mask
the structure of the data, a small width will yield a density
estimation that is noisy. In our work, we used MI metric
available in ITK, which used a third order B-spline function as
the Parzen window [31]. The use of B-spline function satisfies
the constraint for the partition of unity, while remaining
positive, thus being an admissible Parzen window [25], [27].
In addition, in the ITK implementation, in calculating the
probability density function, the image intensity values are
linearly scaled between zero and one. Thus, in order to handle
image data with varying magnitude and range, a fixed B-spline
kernel bandwidth of one is used [31].

A challenge for the method to be applied in large population
studies and routine clinical practice is the computational
cost. It takes on average 1–2 hours for the in vivo tongue
experiments on an Intel i7 CPU with a clock speed of
1.74 GHz. This could sped up by either implementing the
method with GPU or using parallel computing. In addition,
more sophisticated optimization schemes such as gradient
descent with backtracking line search could be employed to
improve the convergence speed.

Validation of any registration algorithm is a challenging
task. Compared to brain registration, both tongue image reg-
istration and its validation are inherently more difficult due
to the movement of tongue. Therefore, selecting anatomical
landmarks is of great importance and, at the same time, a
challenging task even for humans, in assessing the accuracy
of the registration method. This is because there is no true
gold standard other than visual judgment, which is marred by
inter-observer variability. The chosen landmarks are soft tissue
points that abut the pharyngeal airway. They were chosen
because they are visible on both datasets; we did not choose
other landmarks due to differences in spatial resolution of
muscles, slice thickness, and T2-weighting. For example, the
hinge point of the soft palate is not used as a landmark because
the hinge point of the soft palate is not comparable in the
two datasets and the high-resolution dataset captures quiet
breathing and the soft palate is open. The cine dataset captures
speech and the soft palate is closed. Therefore the hinge is
not the same tissue point in the two datasets. The chosen
landmarks are tongue tip, lower lip, and posterior pharynx.
In the present study, the inter-observer variability was high
especially in the lower lip but the overall TRE was comparable
to inter-observer variability (p = NS).

The tongue moves during speech, therefore, different
anatomical features including the tongue surface and velum
move on cine time frames. As a result, there could be

geometrical ambiguities in finding the correct features to
match between hMRI and cine-MRI images. Thus, we aligned
the hMRI data to the first time frame of the cine image
because the tongue is in a relatively neutral position due to the
“uh” speech sound being made. The position of the tongue and
surrounding structures should be close to the resting tongue
position found in hMRI data.

To our knowledge, this is the first report addressing reg-
istration of hMRI and cine-MRI in tongue images. These
images are multimodal in a certain sense and a method to
provide routine coregistration could yield a unique resource
in the scientific research of speech science and speech-related
disorders. The proposed work holds promise to bridge the
two modalities, thereby enriching the information for further
tongue image and motion analyses.

VI. CONCLUSION

In this work, we presented a novel multimodal image
registration algorithm. In order to address limitations of the
MI, we utilized structural information computed from the
3D Harris operator to encode spatial and geometric cues into
the computation of MI. The proposed method was validated
extensively on synthetic data, tongue and brain data to demon-
strate the benefit of its novel features.
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