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Robust contour tracking in ultrasound tongue image
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ABSTRACT
A new contour-tracking algorithm is presented for ultrasound tongue
image sequences, which can follow the motion of tongue contours
over long durations with good robustness. To cope with missing
segments caused by noise, or by the tongue midsagittal surface
being parallel to the direction of ultrasound wave propagation, active
contours with a contour-similarity constraint are introduced, which
can be used to provide ‘prior’ shape information. Also, in order to
address accumulation of tracking errors over long sequences, we
present an automatic re-initialization technique, based on the com-
plex wavelet image similarity index. Experiments on synthetic data
and on real 60 frame per second (fps) data from different subjects
demonstrate that the proposed method gives good contour tracking
for ultrasound image sequences even over durations of minutes,
which can be useful in applications such as speech recognition
where very long sequences must be analyzed in their entirety.
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Introduction

Ultrasound imaging is currently an attractive imaging modality for real-time human
tongue movement (Stone, 2005), with applications in a variety of fields, such as the
study of speech disorders and three-dimensional (3D) tongue modeling. Accurate,
robust tongue contour extraction, however, remains a challenging problem for ultra-
sound sequences of long duration, due to acoustic effects such as shadows, speckle
noise and low signal-to-noise-ratio (SNR). Despite significant research efforts, manual
re-initialization is still usually needed, which is impractical for large-corpora systems.

A variety of processing techniques can be used to track the contour of the tongue, for
example, active contour models (Akgul, Kambhamettu, & Stone, 1999; Li, Kambhamettu,
& Stone, 2005); active appearance models (Roussos, Katsamanis, & Maragos, 2009);
machine learning-based tracking (Fasel & Berry, 2010; Jaumard-Hakoun et al., 2015)
and ultrasound image segmentation-based approaches (Tang, Bressmann, & Hamarneh,
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2012). More recently, some researchers have also proposed using physical properties of the
tongue, contained in a realistic 3D model of the tongue, to help guide the contour
extraction process (Wrench and Balch, 2015; Xu et al., 2014, 2015).

Due to their ability to be guided by constraint forces, active contours may be particu-
larly useful for contour tracking in images of the tongue. Indeed, tongue contour tracking
using energy-minimization-based active contours, or ‘Snakes’, has been used extensively in
previous research. In the contour-tracking algorithm proposed by Akgul et al. (1999), the
snake model was used on ultrasound tongue images for the first time, introducing gradient
information in the definition of an external energy term. By including an intensity-related
constraint, Li et al. (2005) proposed a new contour-tracking system, named EdgeTrak,
which works very well for sequences in which the entire contour always remains visible. If
a part of the contour disappears in some images, however, due to poor acoustic coupling
or a decrease in reflected energy, the obtained contour can become erroneous and require
manual re-initialization to get back on track. This can become problematic for applica-
tions where long speech sequences are to be analyzed.

To help cope with low SNR in ultrasound images, some researchers have proposed
using other imaging modalities (e.g., X-rays) to obtain prior tongue shape information
(Roussos et al., 2009). However, these modalities may use different frame rates, and
registration between different modalities can also be difficult, making such an approach
impractical (the use of X-ray is also nowadays banned). In this article, we explore the idea
of extracting prior shape information from the ultrasound image sequence itself, included
as an extra force to guide the evolution of the hypothetical tongue contour to better handle
images with missing/vague contours. To alleviate the problem of accumulated tracking
error over long sequences, which can necessitate manual re-initialization, we also propose
an automatic procedure, based on the complex wavelet structural similarity (CW-SSIM)
index (Sampat, Wang, Gupta, Bovik, & Markey, 2009). The resulting algorithm has been
tested on both synthetic data and real ultrasound image sequences from multiple subjects.
Results obtained demonstrate that the proposed method can improve robustness of active
contours against missing segments and has the ability to re-initialize the tracking auto-
matically without manual intervention. Such an automatic tracking approach can act as a
complement to hand-scanning and more traditional (but more labor-intensive) contour
extraction tools, such as EdgeTrak and AAA (Articulate Instruments Ltd., 2012) and can
be a valuable improvement for research in areas where longer sequences must be analyzed,
such as speech production, speech recognition in silent speech interfaces (Denby et al.,
2010), swallowing disorders (Sonies et al., 2003) and the like.

Active contour model with similarity constraint

An active contour model is a spline function obtained by minimizing an energy function
that is intended to fit the spline to edges present in the image while retaining a reasonably
regular shape (Kass, Witkin, & Terzopoulos, 1988). Suppose we have an active model of
the tongue contour that can be represented by n discrete points V ¼ v1;v2; � � � ;vn½ �, with
the total energy for snakes defined as:

Etotal ¼ Eint þ Eext (1)

2 K. XU ET AL.
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where Eint is the total internal energy (sum over the n contour points of the local internal
energies defined in relation (2)) and Eext is the total external energy (sum over the n
contour points of the local external energies defined in relation (2)). In this article, we
follow the definition of local internal energy and local external energy used by Akgul et al.
(1999):

Eint vj
� � ¼ α 1� vj�1vj

���! � vjvjþ1
���!� vj�1vj

���!�� �� vjvjþ1
���!�� ��� �þ β vj�vj�1

�� ��� d
�� ��

Eext vj
� � ¼ 1� �I vj

� ��� ��=K
�

(2)

where j ¼ 2; � � � ; n� 1, and α, β are the weighting parameters for the internal energy; d is
the average distance between two consecutive points on the contour; vj is the jth point of
the active contour; �I is the gradient of the image intensity; and K is a normalization
constant.

Although EdgeTrak used dynamic programming in the optimization process, in
practical applications, the performance of the active contour model is prone to corrup-
tion by missing boundaries due to movement of the tongue or to speckle noise. To help
cope with this problem, a contour sequence similarity constraint is proposed in this
work. In an ultrasound image sequence with a high frame rate (in our experiment, 60
fps), a contour extracted in a previous frame should normally be very similar to that
obtained in the current frame, i.e., the deviation of contours extracted from adjacent
frames should not exceed a certain threshold. Even when the local deformation of the
tongue is large, a previous contour can act as a predictor to help regularize the
movement of the active contour, since the true motion of the tongue must be physically
reasonable.

Before the contour-similarity constraint can be added to the active contour model, an
appropriate similarity measure must be defined. A classical method of measuring the
similarity between two contours is to calculate distances between corresponding points.
However, this is not suitable in our case as there is no straightforward way to identify
actual corresponding physical tissue points in contour tracking in ultrasound tongue
image sequences. Also, existing techniques to compare contours in the absence of strict
point correspondence, such as mean sum of distances (MSD) (see ‘Materials and methods’
section), would be difficult to integrate into an energy-based active contour approach.
Here, we explore the use of the rank of a matrix formed from a set of contours to measure
the similarity of the contours of a contour sequence, as in (Zhou, Huang, Duncan, & Yu,
2013). Let a set of m consecutive contours be represented by vectors cj, for j ¼ 1; 2; � � � ;m
(the size of the vector is 2n� 1). Each cj ¼ cxj ; c

y
j

h iT
is obtained by concatenating vectors

cxj and cyj , where cxj is the orthogonal projection of vector cj on the x axis, and cyj is the

orthogonal projection on the y axis. For an image sequence of a sufficiently high frame
rate, it can be assumed that cj is generated from cj�1 via an affine transformation. The

vectors form a matrix C ¼ c1;c2; � � � ; cj; � � � ; cm
� 	

(of size 2n � m, where n is the number
of discrete points and m is the number of consecutive contours), which is a low-rank
matrix for any m. It was proved in Zhou et al. (2013) that rankðCÞ � 6.

To enforce similarity between the contours extracted from adjacent frames, a constraint
term is added to the energy defined in (1), resulting in a new energy Esim for each contour:

CLINICAL LINGUISTICS & PHONETICS 3
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Esim ¼ Eint þ Eext þ γ rankðCÞ (3)

where γ is a weighting parameter. Now, the rank of a matrix is a discrete quantity, which makes
the optimization of Esim difficult. One way to solve this problem is to use the nuclear norm
regularized linear least-squares technique to rewrite the constraint term as (Zhou et al., 2013):

Esim ¼ Eint þ Eext þ γ Ck k� (4)

where Ck k� is the nuclear norm of C (the sum of the singular values of the matrix C). As
the nuclear norm of a matrix is a good approximation to the rank of the matrix, it is
common to substitute the rank minimization problem by the minimization of the nuclear
norm, as has been widely done in low-rank modeling such as in Candès, Li, Ma, and
Wright (2011). The accelerated proximal gradient algorithm of Zhou et al. (2013) is used
for the optimization in this article, as follows: the active contours are evolved at each
iteration using image-based forces, after which the contour group similarity regularization
is imposed by means of singular value thresholding. More detail can be found in Nesterov
(2007) and Zhou et al. (2013). Note that for the m − 1 frames at the beginning of the
sequence, no contour-similarity constraint is added.

Compared to extracting the contour from a single frame, the new force included with the
active contour model acts as prior information that influences the movement of the contour.
In the proposed algorithm, the internal energy is used to keep the continuity of the contour;
the external energy is used to attract the active contour to the real contour in the ultrasound
tongue image, while the similarity constraint acts as an additional force to limit the degrees of
freedom of the movements of the active contour. When several adjacent contours are clear in
the ultrasound tongue image sequences, the external energy will be the dominant term;
whereas if dramatic deformations of the tongue occur in some frames, the similarity-con-
straint force dominates. The value of γ was chosen by hold-out validation: (i) using different
values of γ, contours were extracted by the above algorithm from frames belonging to a subset
of the hand-labeled data, (ii) the MSD defined in relation (6) was computed for each frame of
the subset, and (iii) the value of γ that resulted in the minimum value of the mean MSD was
selected for subsequent contour extraction from the whole data set. As can be seen in Figure 1
(a) for synthetic contour data (with random speckle noise added) and Figure 1(b) on some
real ultrasound test data for frame when the tongue goes parallel to the ultrasound beam, the
similarity constraint makes the active contour more robust and physical.

Automatic re-initialization based on complex wavelet structural similarity
(CW-SSIM) measurement

As with other techniques to extract tongue contours in ultrasound image sequences (Li
et al., 2005; Tang et al., 2012), the input of our algorithm consists of several points (in our
work, at least 12) placed on the surface of the tongue in the first frame of the sequence
(NB: As mentioned earlier, there is no fixed relation between the points chosen and
physical tissue points). Using this input along with the technique of image similarity
measurement, a novel automatic tracking re-initialization is presented in this section. In
this way, we may hope to dispense with the need to manually re-initialize the contour
finding process due to accumulated tracking error over long sequences.

4 K. XU ET AL.
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The proposed method works as follows. Before contour tracking is carried out, the
image-similarity coefficient (defined below) between the current frame and first frame
based on the entire image is calculated. (We note that in our experiment, the first frame
always corresponds to the tongue in rest position.) If this coefficient exceeds a set
threshold, that is, if the current frame is sufficiently similar to the first frame, the positions
of the points on the active contour are re-initialized to those which were input on the first
frame of the sequence. This provides a method to prevent accumulation of errors over
long sequences, which can lead to erroneous contours, and amounts to a sort of ‘automatic
re-initialization’ of the contour based on prior information.

The simplest and most widely used similarity measure is the mean squared error
(MSE), which calculates the mean of squared differences between the intensities of the
pixels of the first frame (with manually chosen contour points) and those of the current
frame. Due to the multiplicative character of speckle noise, however, the technique does
not perform well on ultrasound images. The SSIM-based method (Wang, Bovik, Sheikh, &
Simoncelli, 2004) is another kind of widely used image similarity measurement method,
which, however, is rather sensitive to local image variations, such as small translations and
rotations, which are greatly reduced by the use of a probe-stabilizing helmet, but may still
be present to a reduced extent in ultrasound data taken with such a system. In our
approach, an image similarity measure based on the CW-SSIM technique (Sampat et al.,
2009) is used, which is known to be invariant under small translations, rotations and
distortions, and which, as we shall see, provides very satisfactory results on our data.

Figure 1. (a) Validation on the synthetic data, each row represents the image sequences and the gray
(red) line represents the contour extracted from the image. The gray (red) line in the top row shows the
contour extracted without similarity constraint while the one in the bottom row is the one with
similarity constraint. In our experiment, m = 6 and n = 24 (see discussion in text). (b) Validation on the
ultrasound tongue data. The gray (red) line in the left column shows the contour extracted without
similarity constraint while the one in the right column is the one with similarity constraint.

CLINICAL LINGUISTICS & PHONETICS 5
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To implement the CW-SSIM index, the images are decomposed using a complex version of a
multi-scale, multi-orientation ‘steerable pyramid’ decomposition (Simoncelli and Freeman,
1995). We denote by Wimg1 ¼ wimg1;l l ¼ 1; . . . ;Mj
 �

and Wimg2 ¼ wimg2;l l ¼ 1; . . . ;Mj
 �
the complex wavelet coefficients of the two decomposed images at level M of the pyramid
decomposition. The CW-SSIM similarity index of the two images is defined as:

s Wimg1;Wimg2
� � ¼ 2

PM
l¼1

wimg1;lw�
img2;l

����
����þ K

PM
l¼1

wimg1;l

�� ��2 þPM
l¼1

wimg2;l

�� ��2 þ K
(5)

where w�
img2;l is the complex conjugate of wimg2;l, and K is a small positive stabilizing

constant. The similarity index is positive, and its maximum value is 1, corresponding to two
identical images. As an example, consider the two frames given in Figure 2a and b (from an
unpublished dataset from ‘Male 1’, as defined in the ‘Materials and methods’ section), in

Figure 2. Two frames used to calculate the similarity index, the size of the frame is 320x240. (c) The
difference between Frame 1 and Frame 46. (a) Frame number: 1; (b) Frame number: 46; (c) Frame 46 -
Frame 1 (colormap).

Figure 3. CW-SSIM index of the entire image in an ultrasound image sequence of five utterances of
phoneme /k/. Three different levels of decomposition M are shown.

6 K. XU ET AL.
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which the MSE is 167.32 and the SSIM index 0.69; the CW-SSIM index is 0.86 for four
levels of decomposition (M ¼ 4) and 0.98 for five levels of decomposition (M ¼ 5). More
detail can be found in Sampat et al. (2009). Figure 3 (unpublished test data from ‘Female 1’
as defined in the ‘Materials and methods’ section) shows the variation of the similarity index
during a sequence of five isolated utterances of phoneme /k/. The minima of the similarity
indices are seen to occur at the instants at which these utterances are pronounced.

We implemented the re-initialization method based on the code provided by the web
site (http://www.mathworks.com/matlabcentral/fileexchange/43017-complex-wavelet-
structural-similarity-index-cw-ssim/content/cwssim_index.m), where a MATLAB tool
is proposed; more detail can be found in the site (Simoncelli, 2008, MatlabPyrTools).

In this article, to avoid erroneous re-initialization and make a compromise between
accuracy and complexity, the CW-SSIM index threshold is set to 0.8, and M ¼ 4. In the
ultrasound image sequences, if the index exceeds this threshold, the locations of the
discrete points will be re-initialized to the positions that were set manually in the first
frame, thus improving the contour tracking automatically, without manual intervention.
The example given in Figure 4 (from ‘Female 2’, as defined in the ‘Materials and methods’
section) shows the automated re-initialization process. Before applying the active contour
model on Frame 93, the CW-SSIM index is calculated between 93 and the first frame (with
manually chosen contour points). As the index (0.81) exceeds the threshold we set (0.80),
the contour is reinitialized as the first frame (in our tests, always the rest position).
Without the contour tracking, the execution time of CW-SSIM is about 0.19 seconds
for each pair of frames in our tests.

Materials and methods

Four datasets involving five speakers were used in our tests:

(1) An unpublished test dataset from speaker ‘Male 1’;
(2) An unpublished test dataset of isolated utterances from subject ‘Female 1’;
(3) Portions of a POLYVAR corpus recorded at our laboratory in 2011 on three

speakers – ‘Female 2’, ‘Male 2’ and ‘Male 3’ (Cai et al., 2013);
(4) Portions of a TIMIT corpus recorded in our laboratory in 2010, on speaker ‘Male 1’

(Cai et al., 2011).

Figure 4. Example of automatic re-initialization in the contour tracking. As the CW-SSIM index between
the first frame and the Frame 93 exceeds the threshold, the contour is re-initialized to the original
position in the first frame. (The CW-SSIM index between Frame 1 and Frame 92 is 0.79).
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All datasets used a helmet equipped with a 128-element, 1-inch diameter microconvex
4–8 MHz ultrasound probe, running at 60 fps. Details of the helmet used for datasets
1, 2 and 4 can be found in (Cai et al., 2011), and in Al Kork et al. (2014); while the
helmets used for dataset 3 are described in (Cai et al., 2013). Our algorithm is
implemented using MATLAB 2014b on a Windows 8 desktop with Intel 4-Core 3.7
GHz CPU, 16 GB RAM and ATI Radeon HD 7800 with 6 GB DDR3 VRAM, Dual
AMD Filepro 512 GB PCIe-based flash storage. Hand labelling for comparison to
automatic tracking results was performed by a single labeller and took about 2
months.

Experimental results

First, we examine the execution time of the proposed algorithm. The size of C is 2n
� m, where n is the number of discrete points (n ¼ 12) and m is the number of
adjacent contours, here set to 10. The singular value decomposition calculation is fast,
and the energy minimization using the decomposition is in fact faster than the
minimization processing without the contour-similarity constraint; the computation-
ally heaviest part of our work is the calculation of the similarity between the current
frame and the first frame (the tongue in rest position) using CW-SSIM. The time
performances for the different subjects are very similar, ranging from 220 millise-
conds to 239 milliseconds per frame; thus, on average, a sustained rate of roughly 5
Hz can be maintained with the algorithm in its present form. It is interesting to note
that offline contour extraction frame rates for EdgeTrak and AAA are quite similar to
that obtained here, as long as the sequence under analysis is short enough that long-
term drift does not necessitate re-seeding (Alan Wrench, private communication,
2015). On longer sequences, of course – and even more so with hand-scanning –
hand re-seeding of contours will slow overall processing time down very dramatically,
as compared to the proposed method. In this sense, the approach presented can be
viewed as a complementary, more automatic approach, which can be of significant
value in applications where long sequences must be analyzed in their entirety, as
mentioned earlier. Furthermore, it is conceivable that improvements in the algorithms
employed in the proposed method could, in the future, render it real time, even for
60 fps, or higher.

Figure 5 shows an example result, analogous to the test of Figure 1 on synthetic data,
on 20 contiguous frames from Female 1, in a segment of the data where the contour is
rather faint, due to the orientation of the tongue. Gray (red) lines show the results
obtained with the contour-similarity constraint; white (yellow) lines show the results
obtained without the contour similarity.

The tracking of another example sequence (Female 2) is shown in Figure 6, which lasts
more than 3 minutes (over 17,000 frames). The figure shows the contours from a selection
of frames in the sequence. No manual re-initialization was made during the tracking, aside
from the initial seeding done on Frame 1. On visual inspection of the tracked contours,
the algorithm works quite well.

Occasionally, tracking errors do occur, as shown in Figure 7, due to the presence of a
high level of noise or other anomaly in a particular region of the image over an extended
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period, during which the tongue does not return to the rest position, and the contour is
therefore not automatically reset.

To further demonstrate the performance of the algorithm, an additional experiment
has been carried out to compare the extracted contours to hand-labeled curves. For
validation, MSD is used, defined as:

MSD U;Vð Þ ¼ 1
2n

Xn
i¼1

min j vi � uj
�� ��þXn

i¼1

min j ui � vj
�� �� !

(6)

where V is the contour extracted automatically and U is the result of hand-labelling.
Note once again that the points on the compared contours are not physical tissue
points but simply representative positions on the contour; MSD simply compares the
similarity of two contours U and V by finding, for each point on contour U, the
closest point to it on contour V, which, in general, will not correspond to a reference
point on contour V. As our sequences consist of large numbers of image frames due
to the high capture rate (60 fps), it is very laborious to extract contours manually for
all frames. Therefore, 4000 frames were chosen randomly for manual contour extrac-
tion from the data recording of Female 2, 1000 frames for Male 2 and 2000
frames for Male 3. Compared to the manually extracted contours, the MSD errors

Figure 5. The comparison between the contour-extracted with contour similarity constraint (gray [red]
line in second column) and without contour similarity constraint (white [yellow] line in third column).
As the number of frames is small, image-similarity-based re-initialization was not necessary here.
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Figure 6. The results (Female 2) of contour tracking in the sequences of long duration (lines are the
contour tracked in each frame, while the dots represent the points to represent the curve). To keep the
original result, no contour extrapolation is made.

Figure 7. Examples for poor tracking (Female 2).
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between the contours extracted automatically by different methods are given in
Table 1.

It can be observed that the proposed method, with contour-similarity constraint
and automatic re-initialization, has the best performance (smallest mean and smallest
standard deviation of MSD error). Some other examples of tracking results for
Female 1 are given in Figure 8, showing a variety of tracking qualities. Some results
for Male 1, Male 2 and Male 3 are given in Figures 9–11. No manual re-initialization
was performed on any dataset during the entire tracking procedure. The performance
demonstrates the algorithm versatility on the different subjects. We note that since
Male 3 had undergone a laryngectomy, no hyoid bone or shadow of the hyoid bone
can be observed in the image sequences of this speaker.

Conclusion and perspectives

In this article, a new automatic contour-tracking algorithm is proposed for ultrasound
tongue image sequences. Based on the active contour model, a novel method is presented

Figure 8. Some examples of results for Female 1.

Table 1. Errors by using different methods for different subjects (for Female 2, 400 contours were
extracted manually, for Male 2, 1000 contours were extracted manually, while 2000 contours were
extracted manually for Male 3).

MSD mean errors and standard deviation
(pixels, 1 pixel = 0.295 mm)

Methods Female 2 Male 2 Male 3

Similarity constraint + CW-SSIM 3.36 ± 0.86 3.65 ± 1.02 2.96 ± 0.95
Similarity constraint + SSIM 4.09 ± 2.01 4.29 ± 2.93 5.84 ± 3.40
No similarity constraint + CW-SSIM 18.96 ± 1.08 16.46 ± 1.29 18.64 ± 1.07
No similarity constraint + SSIM 22.43 ± 2.68 19.43 ± 3.47 21.27 ± 4.55
Similarity constraint 4.52 ± 2.53 5.52 ± 3.41 6.45 ± 2.87

The standard deviation is also given in this table. The values in bold are the best results we obtained by comparing
different methods.
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Figure 10. Some examples of results for Male 2.

Figure 9. Some examples of results for Male 1.
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in this article to address the problem of missing or faint contours with a contour-similarity
constraint. Moreover, an image similarity-based automatic re-initialization technique is also
proposed in this article, which can increase the robustness of the tracking and can be useful
for other tongue contour-tracking systems. The algorithm requires no manual re-initializa-
tion, and the performance is encouraging. It serves as a complementary approach to hand-
scanning and existing semi-automatic scanners (e.g., EdgeTrak, AAA) and can be an
important tool for applications where analysis of long sequences is important, such as speech
production, speech recognition, swallowing research (Sonies et al., 2003) and the like.
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Figure 11. Some examples of results for Male 3.
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