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Tissue-Point Motion Tracking in the Tongue
From Cine MRI and Tagged MRI

Jonghye Woo,a Maureen Stone,a Yuanming Suo,b

Emi Z. Murano,c and Jerry L. Princeb

Purpose: Accurate tissue motion tracking within the tongue
can help professionals diagnose and treat vocal tract–related
disorders, evaluate speech quality before and after surgery,
and conduct various scientific studies. The authors compared
tissue tracking results from 4 widely used deformable
registration (DR) methods applied to cine magnetic resonance
imaging (MRI) with harmonic phase (HARP)–based tracking
applied to tagged MRI.
Method: Ten subjects repeated the phrase “a geese”multiple
times while sagittal images of the head were collected at
26 Hz, first in a tagged MRI data set and then in a cine MRI
data set. HARP tracked the motion of 8 specified tissue
points in the tagged data set. Four DR methods including
diffeomorphic demons and free-form deformations based
on cubic B-spline with 3 different similarity measures were
used to track the same 8 points in the cine MRI data set.
Individual points were tracked and length changes of several
muscles were calculated using the DR- and HARP-based
tracking methods.

Results: The results showed that the DR tracking errors
were nonsystematic and varied in direction, amount, and
timing across speakers and within speakers. Comparison of
HARP and DR tracking with manual tracking showed better
tracking results for HARP except at the tongue surface, where
mistracking caused greater errors in HARP than DR.
Conclusions: Tissue point tracking using DR tracking
methods contains nonsystematic tracking errors within and
across subjects, making it less successful than tagged MRI
tracking within the tongue. However, HARP sometimes
mistracks points at the tongue surface of tagged MRI
because of its limited bandpass filter and tag pattern fading,
so that DR has better success measuring surface tissue
points on cine MRI than HARP does. Therefore, a hybrid
method is being explored.

Key Words: deformable registration, tongue motion, MRI,
muscle length, point tracking

Tongue motion is usually measured at the tongue
surface. Imaging techniques such as cine magnetic
resonance imaging (MRI) provide good brightness

contrast, allowing extraction and tracking of tongue surface
contour motion. Point tracking systems, such as electro-
magnetic articulography, track motion of pellets affixed to
the tongue surface. These two types of data assess tongue
surface shape, motion, and position in order to elucidate
tongue and vocal tract function. Measurements within
the tongue would enhance these data but are difficult to
obtain. The only method currently available is tagged MRI
(Parthasarathy, Prince, Stone, Murano, & Nessaiver, 2007),
which is much less easily available than electromagnetic

articulography or cine MRI. Therefore, in the present work
we assessed the use of cineMRImovies to track internal tissue
point motion in the tongue using deformable registration
(DR) to see whether DR can track tissue points from cine
MRI as accurately as they can be tracked from tagged MRI.

Tagged MRI has been used in previous work to track
internal tissue motion of the tongue (Parthasarathy et al.,
2007). Since Zerhouni and colleagues (Zerhouni, Parish,
Rogers, Yang, & Shapiro, 1988) first developed tagged MRI
to create visible myocardial markers, tagged MRI has been
widely used in cardiacmotion tracking (Axel, 2002; el Ibrahim,
2011). It has also been used for other motion-estimation
tasks, including imaging motion of the tongue in speech
(Parthasarathy et al., 2007). Tagged MRI changes the mag-
netization in tissue planes, causing image intensity changes
whose motions are then tracked through time (Axel &
Dougherty, 1989). More specifically, MRI records the den-
sity of hydrogen in tissue. Tagged MRI temporarily magne-
tizes planes of tissue so that tagging can be understood as
the multiplication of the magnetization of the anatomywith a
two-dimensional sinusoid (Parthasarathy et al., 2007). The
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tags are placed just before the subject begins speaking, and
cineMRI images are captured throughout the speech task. As
the tissue moves, the tags move with it, allowing the internal
deformation of the tongue, lips, and velum to be observed
and tracked. Having detailed information about soft tissue
deformation makes it possible to compute many other func-
tion measurements, such as displacement, velocity, rotation,
translation, elongation, strain, and local deformation.

Several tagging methods have been proposed, includ-
ing spatial modulation of magnetization (SPAMM; Axel &
Dougherty, 1989), complementary SPAMM (CSPAMM;
Fischer, McKinnon, Maier, & Boesiger, 1993), and delay
alternating with nutation for tailored excitation (Morris &
Freeman, 2011). However, despite their abilities to offer dif-
ferent spatial tag patterns, quantifying the tissue motion itself
still requires specialized postprocessing methods. Several
methods to process tagged images have been proposed, in-
cluding FindTags (Guttman, Prince, & McVeigh, 1994),
harmonic phase (HARP;Osman,Kerwin,McVeigh, & Prince,
1999; Osman, McVeigh, & Prince, 2000), Gabor filters
(Chen, Wang, Chung, Metaxas, & Axel, 2010), and SinMod
(Arts et al., 2010). As well, both displacement encoding with
simulated echoes (Aletras, Ding, Balaban, & Wen, 1999)
and strain encoded imaging (Osman, Sampath, Atalar, &
Prince, 2001) use stimulated echoes to establish more direct
encoding of the displacement and strain, respectively, in the
recovered signals. For an in-depth review of various tagged
MRI and stimulated echo techniques and applications,
see Axel, Montillo, and Kim (2005) and el Ibrahim (2011).

Cine MRI is a fast imaging technique that does not
involve tags and that is frequently used in speech analysis
because it allows noninvasive observation and measurement
of tongue motion (Narayanan, Nayak, Lee, Sethy, & Byrd,
2004; Stone et al., 2001; Story, 2009; Winkler, Fuchs, Perrier,
& Tiede, 2011). Cine MRI might be well suited to studies of
tongue motion if it could map tongue muscle shortening to
tongue surface deformation. However, cine MRI is weak
at such mapping because it does not image internal muscle
shortening or track tissue point motion from which to mea-
sure changes in position of the muscle origin or insertion.
Despite the limitations of cine MRI, it could supplement
taggedMRI, because taggedMRI is less successful at surface
tracking than internal tracking. Therefore, this study was
motivated by the idea that cine MRI could provide better
tissue tracking at the tongue surface than tagged MRI. In a
recent study, Woo, Stone, and Prince (2011) performed the
fusion of cine MRI and high-resolution MRI in order to
impose muscle anatomy from high-resolution MRI onto
the time frames (TFs) of cine MRI. In the future, rapid
development of MRI technology could also allow high-
quality cine MRI to display textures within the tongue that
reflect tissue characteristics, such as muscle bundles, fascia,
and tendons. Textural information in cine MRI tongue
images might allow the tracking of tissue points that repre-
sent points within or at the origins and insertions of muscles.
In the present study, however, we used currently available
cine MRI images that are representative of the current state
of the art.

In this work, we applied four widely used DR methods
to track tissue points from cine MRI so that we could com-
pare the performance with HARP tracking from taggedMRI
acquired in the same spatiotemporal coordinates as the cine
MRI. In general, DR aims to find correspondences between
source and target images by using a nonlinear transformation
of the coordinate system. By using successive registrations
of different TFs, it is possible to track motion of tissue points.
In this work, we applied four intensity-based DR methods,
including (a) diffeomorphic demons (Vercauteren, Pennec,
Perchant, &Ayache, 2009) and free-from deformations based
on parametric cubic B-splines (Rueckert et al., 1999) with
three different similarity measures: (b) mutual information
(MI), (c) sum of squared differences (SSD), and (d) normal-
ized cross-correlation (NCC).We used thesemethods because
they are state of the art and the different similarity mea-
sures and transformation models differentially affect their
tracking performance. Each of the similarity measures has
unique characteristics. MI is the most popular similarity
measure formultimodal image registration (Pluim,Maintz, &
Viergever, 2003). SSD and NCC are used when two images
are acquired similarly with similar intensity range (Woo et al.,
2010). In particular, NCC is well suited when intensity dis-
tributions between source and target images have an affine
relationship (Hermosillo, Chefd’Hotel, & Faugeras, 2002).
Diffeomorphic demons, like SSD, is based on the assumption
that corresponding pixels have the same intensity values,
but it uses spatial derivatives to form putative directions to
warp the underlying coordinate system. Both transformation
models are considered to be highly deformable (or so-called
“free form”), but the B-spline model is parametric, whereas
diffeomorphic demons uses a nonparametric model that
enforces a diffeomorphism.

There exists literature on tracking the motion of the
heart using cine MRI (Chandrashekara, Mohiaddin, &
Rueckert, 2005; Gupta & Prince, 1995). Chandrasekhar and
colleagues (2005) in particular used DR methods and found
that cine measurements were well correlated to tagged mea-
surements; however, cine MRI did not capture cardiac
twisting well. Tongue motion differs from heart motion in
that it is more deformable and its motions are faster and
more varied. This could diminish the quality of tracking
from DR. However, the tongue is less homogeneous than
the heart, and therefore DR tracking might make use of the
tissue heterogeneity.

In this work, midsagittal tissue points were specified to
represent tissue points bounding intermediate segments of
the superior longitudinal (SL) muscle and the origin and
insertion of genioglossus muscles. Muscle length changes
during speech were determined and validated against tagged
MRI data for the same tasks to decide whether traditional
cine MRI movies could provide reasonably accurate mea-
surements of tissue point motion and muscle length change.
To make these comparisons, both a cine MRI and a tagged
MRI data set were collected in a single data recording session
using identical spatial and temporal parameters. We used
the taggedMRI data, analyzed by means of HARP, to assess
the errors of the four DR estimations of tissue-point location
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and muscle length. We used hand-tracked tissue points to
compare tissue point tracks from HARP and DR.

Method
Subjects and Speech Task

The subjects were 10 normal native speakers of Amer-
ican English between ages 22 and 52 years (six women and
four men). The speech task was “a geese.” This task starts
with a schwa, which positions the tongue in the center of the
vowel space. The schwa is followed by upward tongue body
motion (/g/), forward bodymotion into (/i/) and backing of the
tongue body (/s/), while maintaining an elevated tip and blade.
The jaw is minimally engaged, so that vocal tract shaping is
heavily dependent on tongue deformation. Finally, the task
can be repeated in 1 s, which was our MRI record time.

MRI Instrumentation and Data Collection
All MRI scanning was performed on a Siemens 3.0 T

Tim Treo system (Siemens Medical Solutions, Malvern, PA)
with a 16-channel head and neck coil. Two midsagittal
MRI data sets were collected from each speaker in the same
session: (a) a midsagittal cine MRI movie (cine) and (b) a
midsagittal tagged MRI movie (tagged). The tagged MRI
data were collected using magnitude-imaged CSPAMM
reconstructed (MICSR) images (NessAiver & Prince, 2003;
Parthasarathy et al., 2007). Both data sets had a 1-s record
duration, 26 TFs per second, 6-mm slice thickness and tag
separation (in the tagged data), no gap between slices, and a
1.875-mm in-plane resolution. Both data sets had identical
parameters, including slice location, field of view, and so on.
In-plane resolution was 1.875 mm × 1.875 mm, and seven
sagittal slices were acquired. Other sequence parameters were
repetition time (TR) 36 ms, echo time (TE) 1.47 ms, flip angle
6°, and turbo factor 11.

Both MRI methods produce a single “movie” for each
slice by acquiring and summing multiple repetitions of the
speech task. MICSR requires three repetitions per tissue slice
acquired four times (12 repetitions), and the cine MRI algo-
rithm we used requires five repetitions per tissue slice. The
midsagittal datawere extracted froma sagittal “stack” of five,
seven, or nine slices depending on the subject’s tongue size.
Thus, this study focused on a midsagittal slice to analyze the
motion. We optimized speaker precision during repetition
by training each subject to speak to a metronome beat, which
is also used in the scanner. Data from misaligned repetitions
were discarded. The training method was based on the work
of Masaki et al. (1999). Acoustic recordings of speech were
made in the MRI scanner with a subtraction-type fiberoptic
microphone (Optoacoustics Ltd., Israel) to corroborate pho-
neme locations in the MRI image sequences (Boersma &
Weenink, 2010).

Tissue Point Selection and Tracking
During analysis, eight tissue points were selected man-

ually within the tongue for each subject in the first TF

(TF1) of the cine movie (see Figure 1). The points in Figure 1
represent the location of the SL muscle in the tongue—tip,
blade, dorsum, pharynx, and root—as well as the origins
of the genioglosus anterior (GGa), medial (GGm), and pos-
terior (GGp).

DR tracks, or registers, each pixel in TF1 of the cine
MRI sequence with the closest match, based on image fea-
tures, in each of the remaining 25 TFs. To track the motion of
the tongue, we needed to find the coordinate system trans-
formation describing how each point moves over time. To
find this transformation, we used either (a) diffeomorphic
demons (Vercauteren et al., 2009) or free-from deformations
based on cubic B-spline (Rueckert et al., 1999) with similarity
measures (b) MI, (c) NCC, or (d) SSD. These algorithms
are available in the Insight Segmentation and Registration
Toolkit library (Ibanez, Schroeder, Ng, & Cates, 2003).
Whereas MI and NCC can deal with potential intensity
differences in the registration process, SSD works under the
assumption that the corresponding pixels have the same
intensity values. Thus, prior to the SSD-based registration
and diffeomorphic demons, we applied histogram match-
ing. Histogram matching normalizes the intensity values of
a source frame based on the intensity values of the target
frame. Unlike SSD, which requires same-intensity values
in the corresponding pixels, MI and NCC can compensate
for intensity differences, so histogram matching was not
used for these algorithms. All steps, including preprocessing
and the registration algorithms themselves, were fully
automated.

Figure 1. Eight points and their affiliated muscles. Points 1 through 5
define segments within the superior longitudinal muscle. The rest
indicate user-defined origins and insertions of fibers in the genioglosus
anterior (GGa; 2–6), genioglosus medial (GGm; 4–7), and genioglosus
posterior (GGp; 5–8) muscles. The red square defines the region of
interest used in the analyses. The numbers represent the location
of the superior longitudinal muscle in the tongue (1 = tip; 2 = blade;
3 = dorsum; 4 = pharynx; 5 = root) as well as the origins of the GGa (6),
the GGm (7), and GGp (8).
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Let TF(x, t):WÎR
2 ×R

+YR
+ denote the space-time

acquisition of the frame, where W corresponds to an open
and bounded domain and t denotes the TF (i.e., t = 1,I, 26).
For brevity, TF(x, 1):WÎR

2 is the first TF, denoted as TF1.
After DR, the locations of the eight tissue points chosen
in TF1 space were tracked in the other 25 TFs using all four
methods. We used a linear interpolation method to approx-
imate the grid in the image.

For all four registration methods, we considered se-
quential versus individual tracking. Individual tracking takes
a single tissue point in TF1 and independently deforms it
to the optimal location in the other frames: 1 Y 2, 1 Y 3,
1 Y 4, I, 1 Y 26. Therefore, any one transformation is
unaffected by the others. Sequential tracking deforms the
single tissue point from TF1 to TF2, then from 2Y 3, 3Y 4,
I, and so on, so that the path of that point is followed.
Sequential tracking has the potential to propagate errors made
in early frames to registration of later frames.

We used the tagged MRI data set, which is the best
available measurement of tag motion, as the basis for calcu-
lating the error in the DR tracking estimates of point location
and muscle length. A tagged MRI image is depicted with
themotion path of eight tissue points for Subject 7 in Figure 2.
The black-and-white grid depicts the intersections of hori-
zontal and vertical tagged regions. It is used during motion to
better visualize local tag deformation in the tongue. This is
TF1 and no motion has occurred, so the grid is undeformed
and just contains squares.

We analyzed the MICSR images using the HARP
method, which tracks tags by determining the changes in
harmonic phase over time (NessAiver & Prince, 2003). More
specifically, tagged images have two harmonic peaks in the
frequency domain (Xing et al., 2013). To isolate the spectral
peaks, a bandpass filter is used, which reduces resolution
of the reconstructed motion field and causes blurring. HARP
uses phase information through time to track in every point
of horizontal and vertical tagged images where a dense
two-dimensional motion field is obtained in each direction,
respectively. In addition, the refinement methods were used
to address erroneous tracking due to large tongue motion
(Liu & Prince, 2010) and tag jumping (Liu, Murano, Stone,
& Prince, 2007; Liu & Prince, 2010), respectively. To date,
HARP has provided fast, accurate assessment of the myo-
cardial strains (Garot, Bluemke, Osman, Rochitte, McVeigh,
et al., 2000) and regional function (Garot, Bluemke, Osman,
Rochitte, Zerhouni, et al., 2000) of the heart from tagged
MRI. It also has been recognized as a highly accurate program
used by many in tagged MRI analysis. Therefore, we used
it in the present study to compare the accuracy of the DR
trackingmethods (Cho, Chan, Leano, Strudwick, &Marwick,
2006) and cardiac torsional deformation (Notomi et al., 2005).

Because HARP has a less accurate tracking perfor-
mance at tongue edges, the eight points were selected slightly
below the surface in TF1 of the cine MR images. They were
then superimposed onto TF1 of the tagged images. Recall
that, absent headmotion, the tissue points should be the same
in both data sets. The locations of these tissue points were
then tracked byHARP through the 26 TFs (cf. Parthasarathy
et al., 2007). Examination of their motion in the tagged data
sets allowed identification of possible tag jumping or mis-
tracking. If a tracking or jumping error occurred in the tagged
data, a neighboring point was selected in the tagged data
set and tracked. Once a well-tracked point was identified, it
also was used in the cine data set. The eight points were
located, as much as possible, at or near the two ends of the
muscle sections identified above.

Evaluation
In this section, we describe a series of experiments we

conducted to assess and quantitatively compare the tracking
performance of HARP and DR. This includes tracking in-
dividual points, measuring muscle length change, and using
manual tracking in comparison to HARP and DR tracking.

Tracking motion of specific tissue points using DR and
HARP. To test the accuracy of HARP and DR, we tracked
the motion of eight tissue points. Error is defined as an ab-
solute difference betweenHARP tracking and the DRmethod
under consideration. We report global statistics on the
tracking errors in all eight subjects and give special scrutiny
to the two subjects whose tracking errors were the best and
the worst.

Error in muscle length change using DR and HARP. We
calculated muscle length using the Euclidean distance between
tracked points. The distances between the circumferential
points defined four regions of the SL muscle (1–2, 2–3, 3–4,

Figure 2. A tagged magnetic resonance image (MRI) illustrating the
motion path of eight tissue points for Subject 7. The back of the tongue
moves faster and farther than the front. Colors indicate time, with
yellow occurring earlier than red. Note that the black-and-white grid
is not an artifact; it is the tag grid filled in with black and white
squares. The numbers represent the location of the superior longitudinal
muscle in the tongue (1 = tip; 2 = blade; 3 = dorsum; 4 = pharynx;
5 = root) as well as the origins of the GGa (6), GGm (7), and GGp (8).
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4–5) and three regions of the genioglossus: (a) GGa (2–6),
(b) GGm (4–7), and (c) GGp (5–8; see Figure 1). Points 6 and
7 were above the tendonous origin of the genioglossus, and
Point 8 was below. We computed the lengths using both
DR- and HARP-based tracking.

Comparison between tissue point tracks using DR,
HARP, and manual tracking. A test was performed to de-
termine whether it might be advantageous to combine DR
andHARP in tracking tissue points. The tongue is surrounded
by air, and tissue points at the tongue surface are often poorly
tracked by HARP (Parthasarathy et al., 2007). DR, on the
other hand, excels at matching edges; thus, the combination
of methods might provide excellent tissue point tracking
both on and in the tongue. To test the idea of combining DR
at the edges and HARP within the tongue, we selected three
points from the subject with the best tracked points (Subject 7)
to give HARP and NCC the best chance of tracking accur-
ately. These points were also tracked by hand to compare the
experimenter’s judgment with the NCC and HARP results.
In order for the experimenter to track the points, the points
were chosen at intersecting gridlines in the MICSR images.
The first was chosen at the gridline closest to Point 4. It was
as superficial as the intersecting tag lines would allow. The
other two points were chosen at the next two closest tag–line
intersections that were successively deeper in the tongue.
Measured distances were 6 mm between Points A and B and
8 mm between Points B and C. The three points were tracked
manually by the second author to determine their position
in each TF. These measurements were used to validate both
HARP and the NCC point tracking trajectories.

Results
Tracking Motion of Specific Tissue Points Using
DR and HARP

The results of four different tracking methods are pre-
sented in Tables 1 through 4. As shown in Tables 1 through 4,
the NCC was the best by a small margin, so in this article
we present the results of the NCC method. In addition, the
MI method is the most commonly used in DR, so the MI
results are also presented. The results indicated that the

individual trackingmethod produced less error than sequential
tracking for all subjects and methods. Therefore, we present
only the individual tracking results.

The tissue point trajectories of two subjects, tracked by
HARP, MI, and NCC, are displayed in Figure 3. The circles
indicate the location of the first (red) and last (blue) tissue
point in the motion of “a geese.” The green line shows the
trajectory through the 26 TFs. Subject 7, the best tracked
subject, had mean errors of 2.2 mm and 1.7 mm for the MI
and NCC tracking, respectively. Subject 3 had large mean
errors in both methods—4.4 mm (MI) and 3.2 mm (NCC)—
and had particularly poor tracking of the tongue tip and
dorsum (Points 1 and 3).

The four DR methods all generated considerable track-
ing error. Errors for the best and worst methods are shown
in Tables 1 through 4 and Figure 4. Tables 1 through 4 show
the mean error over the 26 TFs for each point by subject
forMI (worst) andNCC (best). NCCwas considerably better
than MI, but in most cases both methods had poor perfor-
mance within the tongue (see Figure 4). Points 6, 7, and 8
had smaller errors because they were near the mandible and
tended to move very little. The other points had fairly large
errors, in particular Points 1 through 4, which had large mo-
tions. In Figure 4 are graphed the errors of the two methods
relative toHARP for Points 1 and 3 for Subjects 3 and 7. There
were no errors in TF1 because the starting points were the

Table 1. Error (in millimeters) for the mutual information–tracked tissue
points, each averaged over 26 time frames.

Point

Subject

1 2 3 4 5 6 7 8 9 10

1 3.9 3.1 7.7 6.4 3.5 6.3 1.1 4.1 4.3 4.3
2 6.8 4.2 3.7 3.2 7.2 4.3 3.8 3.3 8.1 5.9
3 7.0 5.3 6.5 4.3 7.4 4.5 2.5 7.1 3.6 6.1
4 2.5 3.0 4.0 2.3 3.5 2.5 2.8 5.0 5.2 4.8
5 2.0 1.9 2.7 2.9 2.4 2.0 2.7 4.5 4.5 6.8
6 1.6 3.8 2.5 3.0 1.3 4.3 1.3 1.8 4.7 1.9
7 3.4 5.7 4.1 2.9 2.6 6.2 1.7 2.0 5.6 2.0
8 2.4 5.5 4.0 2.5 2.4 4.6 1.9 1.9 4.0 2.0
M 3.7 4.1 4.4 3.4 3.8 4.3 2.2 3.7 5.0 4.2
SD 2.1 1.4 1.8 1.3 2.3 1.5 0.9 1.9 1.4 2.0

Table 2. Error (in millimeters) for the normalized cross-correlation–
tracked tissue points, each averaged over 26 time frames.

Point

Subject

1 2 3 4 5 6 7 8 9 10

1 2.7 3.4 7.6 5.5 2.4 6.7 1.3 3.1 2.8 3.9
2 3.7 3.3 3.3 3.8 5.2 4.7 2.2 2.7 4.1 3.1
3 4.7 2.6 2.7 3.9 4.2 2.6 2.2 6.5 2.7 3.2
4 4.5 2.9 2.8 2.1 2.7 2.4 2.2 5.1 3.7 3.6
5 2.7 2.1 2.1 2.4 1.6 2.0 2.0 4.1 3.1 4.5
6 2.9 3.8 2.6 3.3 2.1 3.2 0.8 1.8 3.0 2.6
7 2.8 5.2 2.2 2.7 2.1 3.5 1.1 2.0 3.7 2.6
8 1.8 5.0 2.4 1.9 1.6 1.6 1.8 1.6 2.9 2.2
M 3.2 3.5 3.2 3.2 2.7 3.3 1.7 3.4 3.2 3.2
SD 1.0 1.1 1.8 1.2 1.3 1.7 0.6 1.7 0.5 0.8

Table 3. Error (inmillimeters) for the sumof squareddifferences–tracked
tissue points, each averaged over 26 time frames.

Point

Subject

1 2 3 4 5 6 7 8 9 10

1 2.7 3.6 7.4 6.0 2.6 6.6 1.5 2.8 4.1 5.0
2 6.0 5.1 4.0 5.0 7.8 4.6 3.0 3.8 7.0 4.9
3 4.9 2.4 2.8 3.8 4.4 3.5 2.0 7.8 3.8 3.7
4 5.0 3.1 3.7 2.0 3.2 1.7 2.7 5.8 4.7 4.1
5 2.2 2.2 2.5 2.9 2.3 2.0 1.9 4.1 5.4 5.1
6 2.9 5.1 2.3 4.7 2.8 4.0 1.2 1.8 4.8 2.5
7 3.0 7.7 2.7 4.2 4.0 6.2 1.2 2.1 6.8 2.1
8 2.7 7.3 3.1 3.0 3.4 2.5 3.3 1.3 5.0 2.0
M 3.7 4.6 3.6 4.0 3.8 3.9 2.1 3.7 5.2 3.7
SD 1.9 2.3 1.8 2.2 2.0 1.8 1.3 1.8 2.5 1.6
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same in both data sets. For both subjects, NCC (bottom
panels) was tracked more accurately than MI, although
Point 1 for Subject 3 had nearly identical error using both
DR methods.

Error in Muscle Length Change Using
DR and HARP

The SL muscle had small length changes for this task,
possibly because the segments were short. In addition, errors
for all SL muscle segments were highly variable. Because
GGp length was derived from Points 5 and 8 (see Figure 1),
both of which were tracked fairly well for all subjects

(Tables 1–4), we use only the DR data for the GGp, which
were among the best, to demonstrate the error patterns.

The changes in muscle length for GGp, calculated
using HARP, are shown in Figure 5, Panel A, along with the
lengths calculated using MI and NCC. In addition, Panel B
of Figure 5 illustrates the GGp muscle length change as a
percentage with respect to the HARP tracking results. The
contact points /g /, /i /, and /s/ were derived using the visual
inspection of the vocal tract of the motion pattern in the
midsagittal MR images. HARP tracking of the GGp (solid
lines) shows that it started to shorten before tongue–palate
contact was made for /g / (first vertical line) in all subjects,
with the most rapid shortening occurring before /i/ contact
(second vertical line). Thus, shortening of the GGp was
associated most strongly with /i / production. The GGp
remained shortened during the /i / and began to lengthen just
after /s / contact (third vertical line) in all subjects except
Subject 6, who continued shortening theGGp through the /s /.
The results of the MI (dashed lines) and NCC (dotted lines)
registration were sometimes similar in pattern and timing
to the HARP results (solid lines), as seen for Subject 5. The
errors, however, were not systematic within or across sub-
jects. DR overestimated length in Subject 1 and under-
estimated length in Subjects 3, 4, and 8. For Subjects 2, 6, and
10, DR did both at different times, and the DR was quite
noisy for Subjects 7 and 9. Timing errors also varied from
subject to subject. The frame at which the GGp began to
shorten or lengthen was fairly accurate for Subject 1, but not
in most of the others. As with the direction and extent of

Figure 3. Motion patterns of eight points for Subjects 7 and 3 using harmonic phase (HARP) tracking in the tagged MRI data set and using mutual
information (MI) and normalized cross-correlation (NCC) in the cine MRI data set. The red circle is the first time frame, the blue circle is the last time
frame, and the path is green.

Table 4. Error (in millimeters) for the diffeomorphic demons–tracked
tissue points, each averaged over 26 time frames.

Point

Subject

1 2 3 4 5 6 7 8 9 10

1 3.6 2.1 7.7 5.4 0.8 6.5 1.1 4.5 3.3 3.6
2 4.8 2.4 2.6 3.2 1.7 4.9 2.0 3.3 4.3 4.4
3 6.4 3.3 3.7 2.7 2.8 4.0 1.3 4.9 5.1 4.6
4 5.0 3.2 2.6 1.0 1.9 2.6 1.5 3.8 6.9 4.7
5 2.8 2.5 2.2 2.0 1.3 1.4 2.4 3.6 7.6 4.5
6 2.3 2.0 1.9 3.9 1.4 4.4 0.6 1.1 3.8 2.3
7 2.9 2.9 1.7 2.5 2.4 4.3 1.1 1.6 6.2 1.4
8 1.8 2.8 2.2 2.5 2.2 4.2 1.1 1.3 5.1 1.9
M 3.7 2.6 3.1 2.9 1.8 4.1 1.4 3.0 5.3 3.4
SD 1.7 1.4 1.4 1.4 0.9 1.7 0.9 1.4 2.5 1.3
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motion, timing errors were not predictable. Similar error
patterns were seen for the GGa, GGm, and SL muscles
(results not shown).

Comparison Between Tissue Point Tracks Using
DR, HARP, and Manual Tracking

Three additional tissue points were manually tracked
(see Figure 6, Panel A) and compared to automatic tracking
by NCC and HARP tracking methods. Errors between both
automatic methods and the manual tracks are shown for
the three points in Figure 6. Point A was the most superficial
point. In the HARP errors (solid lines in Figure 6, Panel B),
well-tracked TFs usually had subpixel errors (recall that
one pixel = 1.875 mm in both data sets). The large errors seen
in Point A starting at TF17 were caused by HARP mis-
tracking at the tongue surface. The tag pattern faded signif-
icantly in the image by that time and the algorithm tracked a
point occurring in the airway. The error was then propagated
through the rest of the TFs. The NCC errors (dashed lines
in Figure 6, Panel B) were consistently larger than the HARP
errors, except when the mistracking occurred. Although the
DR errors were greater overall, they were more consistent.

Discussion
Tissue point tracks calculated by HARP from tagged

MRI data revealed varied amounts of motion across subjects
and points (see Figure 3). DR tracking was poorer in tracking

internal points, especially when large motions were seen. This
is partly because the DR we used in the present work finds
pixel correspondences based on appearance measures such as
intensity. Thus, a distinctive intensity change, such as edges,
is captured well, whereas the internal tissue is not because of
lack of the distinctive internal features. The internal tissue
patterning of the cine MRI did not sufficiently aid DR, and
the resultant point tracking values were not close enough
to HARP to be useful. The registration task is often cast as an
optimization problem in which data fidelity (i.e., similarity
measure) and regularization are used to find the best trans-
formation that aligns two images. Because the registration
is an ill-posed problem, regularization is used (Woo et al.,
2010). In the present work, in the homogeneous regions where
intensity values do not change, regularization plays an im-
portant role using B-spline (Modersitzki, 2004). However,
although the B-spline carries an intrinsic regularization (i.e., a
type of model on the deformations), the effect of regulariza-
tion is limited. This is because the basis functions of cubic
B-splines have a local support in the neighborhood of control
points (Rueckert et al., 1999) and the regularization may not
reflect how the tongue deforms accurately. This is why tags
have an advantage; the tags are features that give a regular
indication of motion on a local basis without any prior as-
sumption about the deformation. In addition, they are based
on an entirely different method that tracks actual material
points whose phases differ due to magnetic tagging.

The individual tracking method performed better than
the sequential tracking method. As stated before, this is

Figure 4. Error compared to HARP tracking of Points 1 and 3 for subjects with small (Subject 7) and large (Subject 3) DR tracking errors.
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Figure 5. Panel A: comparison of GGp muscle length changes for 10 subjects. MI (dashed lines) and NCC (dotted lines) estimates differ from
HARP tracks (solid lines) by overestimation, underestimation, or both. Panel B: comparison of GGp muscle length changes relative to the HARP
tracking as a percentage (%).
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because the sequential tracking propagates errors, whereas
the individual tracking method compares the target frame
only to TF1. In addition, only the DR method using the
B-spline with NCC and MI similarity measures were used
for the computations, because the B-spline with SSD and
diffeomorphic demons and some of the other methods failed
to track large deformations.

Muscle shortening patterns across subjects were gen-
erally linked to phoneme identity in HARP (see Figure 5,
Panel A). During the upward and forward tongue body
movement into /g/ and /i/, the GGp muscle shortened, and
after the start of /s/ it began to lengthen, consistent with the
local deformations that occur during tongue motion. Of
course, some intersubject differences may have been due to
inadvertently choosing nonidentical points across subjects.
Better methods of muscle identification will be helpful in
preventing of that type error. Muscles tracked with DR
sometimes had similar patterns of shortening and timing to
the HARP tracks; however, the errors were not systematic
(see Figure 5). Therefore, with current image quality and DR
methods it is difficult to reliably predict the true shortening
pattern and reduce the errors of overestimation, underesti-
mation, extreme enhancement, or poor tracking. However,
with improvement in image quality to contain detailedmuscle
information, DR methods could produce results that are
comparable to the HARP tracking method as demonstrated
in other applications (Chandrashekara et al., 2005; Ouyang,
Li, & El Fakhri, 2013).

The DR tracking method has some limitations that can
be improved and others that are inherent in the task. One
inherent limitation is that cine MRI images are not designed
to capture tissue points. The cine MR images used in this
study had low resolution (1.875 mm × 1.875 mm × 6 mm).
Higher resolution images would contain tissue features that
could be exploited better with a DR algorithm. This would
be true of ultrasound or X-ray images as well; the better the
resolution of different tissue types, the better a DR algorithm
would perform. A second limitation is that DR focuses on
edges and image features that are distinctive and does a
poorer job of tracking pixels in homogeneous regions. Several
modifications could improve the DR estimation of tissue
point motion in cine MRI. A motion model, such as the
average tongue motion (i.e., motion atlas) derived from a
large corpus of tagged MRI, could be used as statistical prior
information for regularization to constrain and direct the
tracking algorithm, which is a topic of ongoing research. A
refinement technique, which starts at a well-tracked set of
pixels such as the tongue surface, could constrain tracking of
neighboring pixels, continuing until the entire tongue is
tracked. Regularization methods such as these may be more
limited in their use with certain client populations, however,
because many clients, such as those with neurological im-
pairment, are more likely to be variable and unpredictable in
their utterances.

One of the limitations of HARP is that near edges, such
as the tongue surface, it is more likely to track tissue points
erroneously because of blurring of the tag pattern near the
edges caused by theHARP bandpass filter. Another limitation

Figure 6. Panel A: three tissue points, including: A (surface point),
B (point 6 mm deep to Point A), and C (point 8 mm deep to Point B).
Panel B: tongue tracking errors of HARP (solid lines) and NCC
(dashed lines) relative to manual tracking of three tissue points.
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is that HARP’s ability to track degrades as the tags fade.
Although retagging techniques or data interleaving techniques
are available to address tags fading, speech applications re-
quiremany repetitions, hampering the use of such techniques.
Cine MRI and DR have no such limitations; thus, it is
possible that, with the proper constraints, DR could be used
at the tongue surface especially at later TFs to supplement
HARP measurements. Such a hybrid algorithm has been
reported in a limited data set (Xing et al., 2013). Finally, the
comparisons in the present workwere based on two-dimensional
midsagittal slices. This can be improved by comparing DR
point tracking using full three-dimensional super-resolution
volumes (Woo, Murano, Stone, & Prince, 2012) with an
incompressible deformation estimation algorithm (Liu et al.,
2012), which also is a subject of ongoing research.

Conclusion
DR applied to cine MRI has the potential to allow

calculation of tissue point and muscle properties if the image
is sufficiently detailed. However, at present this approach
cannot track at subpixel resolution, as doesHARP.However,
where HARP cannot be used or has limitations itself, such
as at the tissue–air interface,DRmight be a useful strategy for
some studies, provided that its limitations are well recognized
and accounted for in the analysis.
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