A high-resolution atlas and statistical model of the vocal tract from structural MRI

Jonghye Wooab, Junghoon Leec, Emi Z. Muranod, Fangxu Xingb, Meena Al-Taliba, Maureen Stoneae & Jerry L. Princeb

a Department of Neural and Pain Sciences, University of Maryland, Baltimore, MD 21201, USA
b Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
c Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA
d Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
e Department of Orthodontics, University of Maryland, Baltimore, MD, USA

Published online: 07 Jul 2014.

To cite this article: Jonghye Woo, Junghoon Lee, Emi Z. Murano, Fangxu Xing, Meena Al-Talib, Maureen Stone & Jerry L. Prince (2014): A high-resolution atlas and statistical model of the vocal tract from structural MRI, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, DOI: 10.1080/21681163.2014.933679

To link to this article: http://dx.doi.org/10.1080/21681163.2014.933679
A high-resolution atlas and statistical model of the vocal tract from structural MRI

Jonghye Wooa,b*, Junghoon Leec1, Emi Z. Muranod2, Fangxu Xingb3, Meena Al-Talib4, Maureen Stonea,e5 and Jerry L. Princeb6

aDepartment of Neural and Pain Sciences, University of Maryland, Baltimore, MD 21201, USA; bDepartment of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; cDepartment of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA; dDepartment of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA; eDepartment of Orthodontics, University of Maryland, Baltimore, MD, USA

(Received 31 May 2013; accepted 9 June 2014)

Magnetic resonance imaging (MRI) is an essential tool in the study of muscle anatomy and functional activity in the tongue. Objective assessment of similarities and differences in tongue structure and function has been performed using unnormalised data, but this is biased by the differences in size, shape and orientation of the structures. To remedy this, we propose a methodology to build a 3D vocal tract atlas based on structural MRI volumes from 20 normal subjects. We first constructed high-resolution volumes from three orthogonal stacks. We then removed extraneous data so that all 3D volumes contained the same anatomy. We used an unbiased diffeomorphic groupwise registration using a cross-correlation similarity metric. Principal component analysis was applied to the deformation fields to create a statistical model from the atlas. Various evaluations and applications were carried out to show the behaviour and utility of the atlas.

Keywords: vocal tract atlas; statistical model; MRI; tongue

1. Introduction

The vocal tract is a complex system that consists of both movable and immovable structures, coordinating numerous functions. It is involved in critical human functions such as breathing, eating and speaking. The movable structures such as the lips, jaw, tongue and velum are the primary articulators during speech production. In particular, the human tongue forms remarkably complex shapes. It is a muscular hydrostat (Kier and Smith 1985) with three orthogonal fibre directions and extensive fibre interdigitations. Any bundle of fibres may contain multiple muscles, including intrinsic and extrinsic muscles, categorised by their function. The understanding of tongue muscle structure and function is essential for the diagnosis and treatment of disease and for the scientific studies of the vocal tract itself. To date, however, frustratingly little is known regarding the relationship between tongue structure and function. This is partly because the complex anatomy of the tongue poses challenges to spatially distinguishing each muscle and characterising muscle interaction and function (Gaige et al. 2007).

Imaging of the human vocal tract and tongue with magnetic resonance imaging (MRI) has played an essential role in interpreting muscle anatomy and function. MRI provides quantities that capture features of vocal tract structure and function including surface shapes (Narayanan et al. 1995) and the deformation of the internal tongue musculature (Stone et al. 2001; Parthasarathy et al. 2007). MRI-based imaging continues to be a crucial tool for vocal tract research. Although MRI has played an important role in vocal tract imaging, there are several limiting factors in its use in vocal tract analysis. First, the size and shape of the vocal tract including the tongue and muscles vary from one subject to another as illustrated in Figure 1. As a result, objective assessment of similarities and differences in tongue structure and function has been performed using unnormalised data; this process, however, is biased by differences in size, shape and orientation of the structures. Second, there exists no comprehensive framework to assess variability of the vocal tract’s hard and soft-tissue structures. Both of these limitations can be addressed by using an atlas, which provides a normalised space in which all subjects from a target population can be mapped and compared. This in turn facilitates quantitative comparisons of anatomical features (Buckner et al. 2004) including their statistical variation (Thompson et al. 2000).

Atlases constructed from populations of subject images are widely used computational tools, playing
important roles in the diagnosis and treatment of diseases, segmentation and labelling for surgical planning, and provision of a common coordinate space for comparing subjects of all types (Toga et al. 2006; Yushkevich et al. 2009). Brain atlases, in particular, have been used as references for normalisation of groups of individuals, spatial maps for brain delineation and characterisation of tissue distribution (Shi et al. 2011). To the best of our knowledge, however, currently there is no atlas constructed from a population of images for the study of vocal tract structure and function.

In this work, we constructed a vocal tract atlas and statistical model using structural MRI. Together, the atlas and the statistical model provide an average description of human vocal tract architecture along with its variability within the training population. The atlas building method is a multi-step procedure as illustrated in Figure 2. First, 20 normal subjects were imaged using three orthogonal image stacks (i.e. axial, coronal and sagittal) (Figure 2(A)). Second, for each subject a single high-resolution volume was generated via a super-resolution volume reconstruction technique (Figure 2(B)) (Woo et al. 2012). Third, we processed each volume to remove extraneous image data and bound the vocal tract in order for each stack to have the same anatomical structures (Figure 2(B)). Fourth, we applied a state-of-the-art groupwise registration technique to construct an average atlas image volume together with its anatomical correspondences to each subject (Figure 2(C)). Manual segmentation of the tongue and a variety of muscle structures was then carried out in the atlas (Figure 2(C)). Finally, we performed principal component analysis (PCA) on the deformation fields resulting from atlas building.
which yields a statistical model comprising principal modes of the sample covariance on the deformation fields (Figure 2(D,E)). In this work, we use the term *atlas* to refer to the average of the warped volumes in the common space. The *statistical model* refers to the PCA analysis on deformation fields and other quantities computed in the atlas space.

The remainder of this paper is structured as follows. The atlas building method for the vocal tract is presented in Section 2. In Section 3, we describe experiments for quantitative and qualitative validations of the atlas using tongue and muscle segmentations. Results and discussion are presented in Sections 4 and 5, respectively. Finally, the conclusion is given in Section 6.

2. Methods and materials

2.1 Subjects and data acquisition

Twenty high-resolution MR data-sets were used. All MRI scanning was performed on a Siemens 3.0 T Tim Trio system (Siemens Healthcare, Inc., Malvern, PA, USA) with a 12-channel head and a 4-channel neck coil using a segmented gradient echo sequence. In addition, a T2-weighted Turbo Spin Echo sequence with an echo train length of 12 and TE/TR of 62 ms/2500 ms was used. The field-of-view of each image was 240 mm × 240 mm and was sampled at 256 × 256 pixels. Each data-set contains a sagittal, coronal and axial stack of images encompassing the tongue and surrounding structures. The image size for the high-resolution MRI is 256 × 256 × z (where z ranges from 10 to 24) with 0.94 mm × 0.94 mm × 3 mm slice thickness. The data-sets were acquired at a rest position, and the subjects were required to remain still from 1.5 to 3 min for each orientation. Table 1 summarises the characteristics of the 20 healthy subjects.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Gender</th>
<th>Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>M</td>
<td>155</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>F</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>F</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>57</td>
<td>F</td>
<td>170</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
<td>F</td>
<td>217</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>M</td>
<td>210</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>F</td>
<td>180</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>F</td>
<td>180</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>F</td>
<td>160</td>
</tr>
<tr>
<td>10</td>
<td>44</td>
<td>M</td>
<td>155</td>
</tr>
</tbody>
</table>

Note: M, male; F, female.

Table 1. Characteristics of the 20 healthy subjects.

2.2.2 Preprocessing

Once super-resolution volumes were generated for each subject, we performed several preprocessing steps prior to atlas construction. These steps include (1) removing the MRI wraparound artefact, (2) spatially bounding the volumes so that each volume has the same anatomical features and (3) intensity bias correction to reduce the impact of the intensity inhomogeneities (Avants et al. 2008). These steps improve the registration performance in atlas construction (see Figure 2(A) vs. Figure 2(B)).

2.2.2.1 Groupwise registration and atlas construction.

Aligning and combining image data from a group of individuals into a common space allows us to build a model of average vocal tract anatomy, to obtain a volume with increased SNR and to investigate similarities and differences across subjects (Yushkevich et al. 2009). The atlas building procedure involves a groupwise affine registration as an initial transformation followed by a groupwise deformable registration using the Symmetric Normalisation (SyN) algorithm (Avants et al. 2008) to further register the image volumes. We obtained the final atlas by averaging all the registered volumes.

We made use of an unbiased groupwise registration using the SyN algorithm with a cross-correlation (CC)
The velocity fields where the local means similarity metric (Avants et al. 2008; Yushkevich et al. 2009; Shi et al. 2011; Woo et al. 2012). This method has been demonstrated to be among the most accurate intensity-based normalisation methods (Klein et al. 2009). Let \(\{ I_R, I_i \}_{i=1}^N \) be a group of \(N \) subject volumes (\(N = 20 \) in this work) to be registered using the SyN algorithm and \(I_R \) be the atlas that is sought. The objective of the atlas construction is to find \(I_R \) that minimises

\[
E(I_R, I_i) = \sum_{i=1}^N E(I_R, I_i),
\]

where \(E \) is an energy between the atlas and each image. The energy is evaluated by first finding a diffeomorphic registration between the two images and then evaluating a cost criterion based on the integrated CC metric and the two velocity fields describing the symmetric diffeomorphism.

The CC metric is evaluated locally at each spatial position \(x \) and is given by Avants et al. (2011)

\[
CC(I_R, I_i, x) = \frac{\sum_j (I_R(x_j) - \mu_{I_R}(x_j) - I_i(x_j)) (I_R(x_j) - \mu_{I_R}(x_j) - I_i(x_j))^T}{\sum_j (I_R(x_j) - \mu_{I_R}(x_j))^2 \sum_j (I_i(x_j) - \mu_{I_i}(x_j))^2},
\]

where the local means \(\mu_{I_R}(x) \) and \(\mu_{I_i}(x) \) are computed in a 5 x 5 x 5 square volume around \(x \) and the summations are also carried out over the same local volume. The use of a CC metric is particularly important to cope with the inter-subject image intensity inhomogeneity. Next, two optimal diffeomorphic transformations \(\varphi_{i1}^* \) and \(\varphi_{i2}^* \) for each image \(I_i \) are computed by minimising the following functional:

\[
E(I_R, I_i, \varphi_{i1}, \varphi_{i2}) = \sum_{i=1}^N CC \left[I_R \left(\varphi_{i1} \left(x, \frac{1}{2} \right) \right), I \left(\varphi_{i2} \left(x, \frac{1}{2} \right) \right), x \right] + \int_0^{1/2} \left\| \frac{\partial \varphi_{i1}(x,t)}{\partial t} \right\|_L^2 dt + \int_0^{1/2} \left\| \frac{\partial \varphi_{i2}(x,t)}{\partial t} \right\|_L^2 dt,
\]

subject to \(\frac{\partial \varphi_{i1}(x,t)}{\partial t} = v_{i1}(\varphi_{i1}(x,t), t), \ k = 1, 2. \)

The velocity fields \(v_{i1}(x,t) \) and \(v_{i2}(x,t) \) are associated with the diffeomorphic transformations as described in Avants et al. (2011). The pairwise energy function is then defined as \(E(I_R, I_i) = E(I_R, I_i, \varphi_{i1}^*, \varphi_{i2}^*) \). The algorithm iterates between finding a new atlas image \(I_R \) and finding optimal diffeomorphisms \(\varphi_{i1}^* \) and \(\varphi_{i2}^* \) until convergence to a minimum total energy is achieved.

2.2.3 Manual tongue and muscle segmentation

For purposes of validation, a manual segmentation of the tongue surface was performed on each of the 20 subjects and the atlas (the ‘average’ image volume) by one expert observer. With an in-house software based on Lee et al. (2013), initial tongue segmentations were obtained and these segmentations were then refined manually using the ITK-SNAP software (Yushkevich et al. 2005). This approach reduces segmentation time significantly and helps the observer to delineate the tongue regions consistently. These manual segmentations serve as ground truths to validate the mappings used for the atlas building.

In addition, a variety of vocal tract structures (16 in total) in the atlas were manually segmented, including (1) the hyoid bone, (2) the palate and maxillary bone, (3) the mandibular bone, (4) the tongue, (5) the larynx, (6) the soft palate and hard palate mucosa, (7) the geniohyoid muscle, (8) the genioglossus muscle, (9) the hyoglossus muscle, (10) the digastric muscle, (11) the mylohyoid muscle, (12) the styloglossus muscle, (13) the inferior longitudinal muscle, (14) the superior longitudinal muscle, (15) the sublingual gland and (16) the submandibular gland (see Figures 4–6). These manual segmentations allow construction of the statistical shape model so that it includes these additional muscles and structures in addition to the tongue surface.

2.2.4 Statistical models using PCA

In this section, we describe a PCA method to create the statistical models in atlas space. PCA is used to analyse the variability of the entire volume (see Figure 7) as well as shape variability of the segmented structures within the volume (see Figure 8). We apply PCA to the deformation fields required to map individual anatomies to the atlas, which provides second-order statistics by finding the principal modes of the sample covariance on the deformation fields. The PCA used here is a global PCA for the entire anatomy, which is different from multi-object statistical models such as in Cerrolaza et al. (2012), Dutta and Sonka (1998), Lu et al. (2007) and Tsai et al. (2003). Let us first denote the deformation fields, \(\{ h_1, h_2, \ldots, h_N \}, N = 20 \), defined by the mappings from an individual anatomy to the atlas. In this work, we are particularly interested in these deformations. They are Deformation I, which is a global transformation that represents the homogeneous plus local volume changes achieved by removing the rigid transformations from the cascade of the affine transformation and local deformations (SyN), and Deformation II, which represents the local deformations provided by SyN only. The average deformation field at every point is then given by

\[
m_h = \frac{1}{N} \sum_{i=1}^N h_i,
\]

where \(N = 20 \). The sample covariance of the deformation fields is constructed by

\[
C = \frac{1}{N} \sum_{i=1}^N (h_i - m_h)(h_i - m_h)^T,
\]

where the mean offset map, \(h_i - m_h \), is a column vector.
Using singular value decomposition, the covariance matrix is decomposed into the set of orthogonal modes of variation and a diagonal matrix of corresponding singular values. The principal components (PCs) of variation are the eigenvectors \(e_i \) of the covariance matrix \(C \), and a deformation field \(h \) can be approximated using the first \(k \) eigenvectors \(e_i \) corresponding to the largest eigenvalues \(\lambda_i \) by

\[
h = m_h + \sum_{i=1}^{k} \omega_i e_i,
\]

where \(\omega_i \in \mathbb{R} \) are weights for the different PCs. The instances of the atlas and segmented structures can then be computed by projection onto the PCs as given by

\[
V_S = V \left(m_h + \sum_{i=1}^{k} \omega_i e_i \right) \quad \text{and} \quad M_S = M \left(m_h + \sum_{i=1}^{k} \omega_i e_i \right),
\]

where \(V \) and \(M \) denote the atlas and the segmented structures in the atlas space, respectively, and \(V_S \) and \(M_S \) represent the volume and shapes with different modes of variation, respectively. The mean shape, the PCs and the associated eigenvalues compose the statistical model.

3. Evaluations and applications

In this section, we describe a series of experiments to assess the vocal tract atlas and statistical models both qualitatively and quantitatively and to demonstrate potential applications of the atlas. The experiments include PCA analysis on the deformation fields, segmentation of the tongue using transformations used in building the atlas and deformation-based voxel analysis.

3.1 PCA analysis

PCAs are computed on two deformations (Deformations I and II) of the data to assess the contribution of homogeneous and local deformations. We create statistical models of the volume and shapes of different muscles using the two deformations and describe the effect of the PCs computed using each deformation.

3.2 Segmentation of the tongue surface using the atlas

We perform leave-one-out experiments using 21 subjects by creating 21 atlases, each made up of 20 subjects. We then use an automated atlas-based segmentation to delineate the tongue of each excluded subject in all 21 experiments. To obtain a segmentation of the target volume, the segmentation of the atlas is deformed using the same mapping determined during the registration. We use the same registration method used in our atlas building, which includes an affine registration, followed by a deformable registration using the SyN algorithm with the CC similarity measure. Two measurements are used to gauge the accuracy of the segmentation results. The first measurement is the dice similarity coefficient (DSC) defined as

\[
DSC = \frac{2|A_S \cap A_g|}{|A_S| + |A_g|},
\]

where \(A_S \) and \(A_g \) are the areas enclosed by the segmented contour registered to the excluded subject and the manual segmentation in the excluded subject, respectively. The second measurement is the intraclass correlation coefficient (ICC) (McGraw and Wong 1996), demonstrating the reliability of the volume measurements obtained from different methods. The mean and standard deviation of the measurements are computed to evaluate the variation of the segmentation results. In our study, statistical significance is evaluated using a paired t-test (\(p < 0.05 \)).

The schematic diagram is shown in Figure 3.

3.3 Deformation-based voxel analysis

The deformation fields (e.g. Deformations I and II) obtained in atlas construction carry information about global differences in the local volume when the Jacobian of the deformation field is applied. In addition, the deformation fields reveal the degree and location where the tongue volume varies during the atlas building. In this analysis, we derive the volume changes using Deformations I and II. We first compute the Jacobian of Deformation I to characterise volume changes that indicate anatomical changes. In order to observe volume changes in each muscle, a mask obtained from the muscle segmentation is used to restrict the muscle region in the atlas space. The Jacobian of the deformation field at each voxel is defined as follows:

\[
J(x) = \begin{bmatrix}
\frac{\partial h_1(x)}{\partial x} & \frac{\partial h_1(x)}{\partial y} & \frac{\partial h_1(x)}{\partial z} \\
\frac{\partial h_1(x)}{\partial x} & \frac{\partial h_1(x)}{\partial y} & \frac{\partial h_1(x)}{\partial z} \\
\frac{\partial h_1(x)}{\partial x} & \frac{\partial h_1(x)}{\partial y} & \frac{\partial h_1(x)}{\partial z}
\end{bmatrix}.
\]

The Jacobian determinant is then computed to calculate the volume changes at each voxel. The volume changes (Woo et al. 2012) in each muscle is given by

\[
\text{Volume ratio} = \frac{\int_{\Omega} |J(x)|M(x) \, dx}{\int_{\Omega} M(x) \, dx},
\]
where $|J(x)|$ denotes the Jacobian determinant and $M(x): \Omega \subset \mathbb{R}^3 \rightarrow (0, 1)$ denotes the segmented mask region defined in the atlas space Ω.

4. Results

The computations were performed on a Dell R415 server running Fedora Linux 14, and the system has 12 processors with a clock speed of 2.73 GHz and 47.25 GB of RAM. The computation time to create the atlas was 196 h. The final vocal tract atlas and manual tongue and muscle segmentations are illustrated in Figures 4–6. The vocal tract atlas allows us to define the standard anatomy. The bone structure and palate are shown in Figure 4, various muscles and other structures are shown in Figure 5 and the tongue is shown in Figure 6.

4.1 PCA analysis

Figure 7(a),(b) shows the statistical volume atlas using PC1 and PC2 of Deformation I, respectively. PC1 and PC2 appear to provide horizontal and vertical stretches and represent 63% and 19% of the statistical variability, respectively. This indicates that the greatest transformation between subjects is affine (i.e. global stretching, shearing and scaling), accounting for 82% of the variance.

Figure 7(c),(d) shows the statistical volume atlas using PC1 and PC2, respectively, of Deformation II. PC1 appears to represent local changes in the distribution of tissue in the lower half of the face and tongue so that positive PC1 shows a thin face front-to-back and left-to-right and is elongated vertically, whereas negative PC1 shows a wide face front-to-back and left-to-right and is shortened vertically. These local effects account for 31% of the variance. In particular, for PC2, the most salient effect is the change from a very sloped chin (see images in Figure 7(d), column -3σ) to a more horizontal chin (see images in Figure 7(d), column $+3\sigma$).

Figure 8(a),(b) depicts the 3D statistical shape atlas using PC1 and PC2 of Deformations I and II, respectively, applied to the segmented structures in the atlas. The shape changes are the same as those shown in Figure 7, but here one can better appreciate the 3D characteristics of the shape changes and also observe a differentiation of effects on separate parts of the anatomy. Table 2 lists the variances accounting for each PC of Deformations I and II.

4.2 Segmentation of the tongue surface using the atlas

In this section, we describe the results of tongue segmentation using an atlas-based segmentation. Figure 9 depicts an example of manual segmentation of the tongue (first row) and the segmentation obtained using the atlas-based segmentation (second row). Figure 10 shows an example of the tongue volume comparison between the atlas-based segmentation and manual segmentation. The mean values of the tongue volume calculated from 21 subjects by using the atlas-based segmentation and manual segmentation of the subject were 118.1 ± 30.9 and 120.9 ± 29.3 ml, respectively. There was excellent correlation between the two measurements ($r = 0.9, p = 0.23$), with a best-fit linear relationship of $y = 1.0207x$. The ICC was found to be 0.85.
A Bland–Altman analysis for manual segmentation and segmentation using the atlas is shown in Figure 11; this indicates a satisfactory result with only one outlier. A plot of all DSC results is provided in Figure 12. Across all 21 atlases, the mean and standard deviation of the DSC are 0.91 and 0.03, respectively. We found that two subjects had low DSCs (0.83 and 0.84) and their heads were quite rotated backward and forward. Rigid body registration followed by deformable registration improved the dice coefficient to 0.84 and 0.86, respectively. The above results show that the atlas-based segmentation of the whole tongue from the atlas to the individuals accurately characterises the geometry and volume provided by manual delineation.

4.3 Deformation-based voxel analysis

We present here a deformation-based voxel analysis including the Jacobian map and volume ratio using the Jacobian determinant. The 16 manually segmented

Figure 4. High-resolution vocal tract atlas overlaid with manual segmentation of bone and soft palate. The atlas allows definition of the standard bone and soft palate structures.

Figure 5. High-resolution vocal tract atlas overlaid with manual segmentation of muscles and extraneous structures. The atlas allows definition of the standard muscular structures.
structures shown in Figures 4–6 identify the regions of interest in the tongue and vocal tract. By analysing the Jacobian map derived from the deformation fields used in atlas building or a pair-wise registration between the atlas and a subject, one can observe the volume and anatomical differences of each muscle. Figure 13 shows an example of the log Jacobian map of Deformation I of the whole tongue in one subject. The red and blue colours indicate tissue expansion and shrinkage, respectively, relative to the atlas. Figure 14(a),(b) illustrates the statistics of the volume ratio for each muscle between the 20 subjects and the atlas using Deformations I and II, respectively. The means ± standard deviations of the volume ratios for the combination of the muscle volumes in the whole tongue using Deformations I and II are 1.0 ± 0.2 and 1.0 ± 0.1, respectively. The volume ratios for each of the 16 structures varied more, indicating that the distribution of muscle volume is not uniform across subjects.

5. Discussion

An anatomical vocal tract atlas was created using a symmetric and diffeomorphic groupwise registration from the super-resolution volumes of 20 subjects. PCA was used to construct statistical models for the whole volume and for the segmented vocal tract structures.

There are several important characteristics and potential uses of this vocal tract atlas. First, the atlas represents an average, not a specific subject, and therefore any use of it is not biased by a specific individual’s anatomical features. Second, the entire volume and all the segmented structures are normalised at the same time, saving computation time in this and future atlases. Third, information from the atlas can be incorporated into the segmentation or registration process as statistical prior information. Fourth, the atlas allows the capture of anatomical variability by providing a coordinate space for motion analyses using PCA or cluster analysis of velocity fields as in Stone et al. (2010). In addition, statistical analyses can be applied to individual structures or the entire volume.

The transformations needed to deform subjects to the atlas were analysed by PCA. Affine transformation is adequate when the difference between images involves global rotation, scaling and shearing. Deformable registration is used to capture the local shearing or scaling as shown in Figure 7(c),(d). In the present study, Deformation I was sufficient to capture most of the variance between subjects as these are all normal adults. However, when creating atlases or transforming other populations into this atlas, such as patients with structural malformations or children, then the local deformation may yield a larger percentage of variance.

For different reasons, the literature indicates the lack of consensus on how to measure volume differences across subjects. For example, there has been some literature questioning the relative sizes of muscles volume and relative sizes of muscles consistent across subjects with different total muscle volumes (Holzbaur et al. 2007). In their work, these questions were addressed by measuring muscle volumes in healthy subjects from MRI. In the present work, however, deformation fields were used to measure volume differences of muscles and extraneous structures relative to the atlas.

We see a few directions for improvement in the present work. First, we will characterise the muscle interaction and
Figure 7. Visualisation of the results of PCA analysis. The vocal tract atlas was warped by the first two PCs using Deformations I and II. (a) PC1 of Deformation I shows variance in vertical length changes. (b) Atlas warping by PC2 of Deformation I shows variance in AP width. (c) Atlas warping by PC1 of Deformation II shows variance in the LR width. (d) Atlas warping by PC2 of Deformation II represents vertical differences in the posterior oral cavity. Deformation I represents the homogeneous plus local volume changes by removing the rigid transformations from the cascade of the affine transformation and local deformations (SyN) and Deformation II represents the local deformations only (SyN).
function using both muscle segmentation and motion information obtained from the speech data. Second, we will compare muscle volume differences from (1) the atlas results, (2) those results transformed back into subject’s space and (3) unnormalised results to further determine the quality of the atlas results. Third, multi-object statistical models (Duta and Sonka 1998; Tsai et al. 2003; Lu et al. 2007; Cerrolaza et al. 2012) provide geometric information such as inter-object relations and locality, which is

Table 2. PC loadings for each deformation.

<table>
<thead>
<tr>
<th>PC</th>
<th>Deformation I (%)</th>
<th>Deformation II (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>63</td>
<td>21</td>
</tr>
<tr>
<td>PC2</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>PC3</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>PC4</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>PC5</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Figure 8. The surface renderings of segmented structures of the vocal tract atlas. (a) The surface of the substructures of the vocal tract atlas was warped by PC1 and PC2 of Deformation I, respectively. (b) The surface of the substructures of the vocal tract atlas was warped by the PC1 and PC2 of Deformation II, respectively.

Figure 9. The first row shows one resulting volume from super-resolution volume reconstruction overlaid with a tongue manual segmentation. The second row shows segmentation using the atlas and the inverse mapping. Axial, sagittal and coronal directions are shown in (a; b) and (c), respectively. The DSC is 0.938 in this case.
not found in our model. However, this is the first step in the development of the atlas, and so we are focusing on a simple model that characterises the anatomical variability encoded in the set of deformation maps in the atlas building (Joshi et al. 2004).

Following from analogous work in the brain (Gholipour et al. 2012; Hasan et al. 2012), we anticipate several applications of the atlas to the analysis of tongue image data. The atlas may be used to register functional data from different subjects to a common anatomical space, thereby allowing group-level inferences (Datta et al. 2012). Individual differences in tongue and muscle structures as assessed by different imaging modalities, such as diffusion tensor imaging, could be related to normal variations of behaviour or one of many disease states. Thus far, it has been difficult to accurately characterise the relationship between structure (i.e. anatomy) and function (i.e. speech) due to the varied...
sizes and shapes of the tongue and its muscles. With future studies, this atlas has the potential to accurately inform how the interactions among different muscles impact overall speech production, opening a new window for the investigation of dynamic speech production and speech disorders.

Figure 12. The DSC for all subjects used in the atlas building. The mean ± standard deviation is 0.92 ± 0.05.

Figure 13. Illustration of the log Jacobian map of Deformation I. The blue shows the tissue expansion and the red indicates the volume shrinkage relative to the atlas. It is clearly shown that log Jacobian map exhibits the volume and anatomical changes of each muscle during the atlas building.

Figure 14. The box-and-whisker diagram for the volume ratio in each muscle using (a) Deformation I and (b) Deformation II. Please note that the combined volume ratio was preserved across subjects.
6. Conclusion
In this work, we presented a vocal tract atlas construction method and statistical models of vocal tract variation from 20 normal subjects. Super-resolution volumes were constructed and unbiased groupwise registration was used to create the atlas and symmetric and diffeomorphic deformations fields from the atlas to the subjects. PCA applied to the deformation fields provided a statistical model of anatomic variation. PC1 and PC2 of Diffeomorphisms I and II accounted for 82% and 33% of the variance, respectively. The single atlas-based segmentation of the whole tongue from the atlas to the individuals yielded accurate characterization of the geometry and volume (the mean of DSC was 0.9). This vocal tract provides an integrative framework in which individual subjects can be mapped and compared, thus opening new vistas for structural and functional studies of the vocal tract.

Acknowledgements
The authors thank Dr. Ian Stavness for valuable discussion on the volume ratio of the muscles. The authors also thank the reviewers for their helpful comments.

Funding
This work was supported by NIH [grant numbers R01CA133015, K99/R00DC009279 and K99DC012575].

References
deformable and probabilistic atlases of the human brain.

Hum Brain Mapp. 9:81–92.

