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Abstract. Understanding the deformation of the tongue during human
speech is important for head and neck surgeons and speech and language
scientists. Tagged magnetic resonance (MR) imaging can be used to im-
age 2D motion, and data from multiple image planes can be combined via
post-processing to yield estimates of 3D motion. However, lacking bound-
ary information, this approach suffers from inaccurate estimates near the
tongue surface. This paper describes a method that combines two sources
of information to yield improved estimation of 3D tongue motion. The
method uses the harmonic phase (HARP) algorithm to extract motion
from tags and diffeomorphic demons to provide surface deformation. It
then uses an incompressible deformation estimation algorithm to incor-
porate both sources of displacement information to form an estimate of
the 3D whole tongue motion. Experimental results show that use of com-
bined information improves motion estimation near the tongue surface,
a problem that has previously been reported as problematic in HARP
analysis, while preserving accurate internal motion estimates. Results on
both normal and abnormal tongue motions are shown.
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1 Introduction

The human tongue moves rapidly in complex and incompressible motions dur-
ing speech [1]. In post-glossectomy patients, i.e., people who have had surgi-
cal resection of part of the tongue muscle for cancer or sleep apnea treatment,
tongue moving ability and its speech functionality may be adversely affected.
Therefore, understanding the tongue motion during speech in both normal and
post-glossectomy subjects is of great interest to speech scientists, head and neck
surgeons, and their patients.

To capture the tongue’s motion during speech, tagged magnetic resonance
(MR) images can be acquired over a series of time frames spanning a speech
utterance [2, 3]. The two-dimensional (2D) motion information carried in these
images can be extracted using the harmonic phase (HARP) algorithm [4]. With a
collection of 2D motions from image slices covering the tongue, a high-resolution
three-dimensional (3D) motion estimate can be achieved by interpolation with
previously reported incompressible deformation estimation algorithm (IDEA) [5].
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However, this approach suffers from a key problem inherited from HARP.
Since HARP uses a bandpass filter to extract the harmonic images, object bound-
aries are blurred and therefore motion estimates near the anatomical surfaces are
inaccurate [6, 7]. To make matters worse, HARP measurements near the bound-
aries are sparse because of the sparseness of image plane acquisition. These
two problems severely affect 3D motion estimation near anatomical surfaces, as
shown in Fig. 1. Zooming in on the back of the tongue (see Fig. 1(a)), 1(b)
shows the sparse 2D motion components from HARP and 1(c) is the IDEA
reconstruction of 3D motion that shows inaccurate large motions.

Fig. 1. (a) Tongue mask of a normal control subject (sagittal view). (b) HARP field
on axial and coronal slices as input for IDEA, zoomed in at the tongue back. (c) IDEA
result at the tongue back. (d) Surface normal deformation component at tongue back
surface. (e) Proposed method result. Note: In this paper cones are used to visual-
ize motion fields, where cone size indicates motion magnitude and cone color follows
conventional DTI scheme (see cone color diagram).

This paper presents a novel approach that combines data from tagged images
with surface deformation information derived from cine MR images to dramati-
cally improve 3D tongue motion estimation. In every time frame, the tongue is
segmented from the cine images to achieve a 3D surface mask, and the defor-
mation between the reference mask (at the first time frame) and the deformed
mask (at current time frame) is computed using deformable registration. The
normal components of surface deformation are then used to augment the HARP
measurements within the IDEA estimation framework. To illustrate, Fig. 1(d)
shows the additional input and Fig. 1(e) shows the result of proposed method.
Comparing with Fig. 1(c), this result is more sensible from a qualitative point
of view. Quantitative evaluations provided below also show that this method
achieves a more accurate estimate of the whole tongue motion.
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2 Methods

2.1 Data Acquisition and HARP Tracking

In this study, subjects repeatedly speak an utterance “asouk” during which
tagged and cine MR image sequences are acquired at multiple parallel axial
slice locations covering the tongue. The resolution scheme is 1.88 mm in-plane
(dense) and 6.00 mm through-plane (sparse). For tagged images, both horizontal
and vertical tags are applied on each slice, providing motion components in two
in-plane directions (x and y components). To acquire motion components in
the through-plane direction (z component), another set of parallel coronal slices
orthogonal to axial is also acquired. HARP is then used on every tagged image
at every time frame, resulting in a corresponding 2D motion field representing
the projection of the 3D motion of every tissue point on the current slice plane.
Fig. 1(b) shows such HARP slices for the utterance “asouk” at the moment
when /s/ is sounded (current time frame), where the tongue is expected to have
moved forward from the /a/ moment (time frame 1) when the tags are applied.
Meanwhile, cine images revealing better anatomical structures are going to be
used for segmentation and registration to be described in section 2.3.

2.2 IDEA Algorithm

Fig. 2. Relationship between 2D motion components and 3D motion on (a) an axial
slice, (b) a coronal slice and (c) the tongue surface.

Figs. 2(a) and 2(b) illustrate how HARP data are processed in IDEA [5].
The undeformed tissue at time frame 1 has undeformed reference tag planes. At
current time frame, the tag planes have deformed along with the tissue. To each
point (pixel location) xa on an axial image such as Fig. 2(a), HARP produces
two vectors representing components of displacement:{

qx = qxex ,
qy = qyey ,

(1)
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where ex and ey are unit vectors in the x and y directions and qx and qy are the
projections of the 3D motion u(xa) on the current axial plane. Similarly, for each
point xc on a coronal image such as Fig. 2(b), HARP yields the displacement
component vector

qz = qzez , (2)

where ez is the unit vector in the z direction.
IDEA takes such data on all pixels {xa,qx(xa),xa,qy(xa),xc,qz(xc)} as in-

put, and estimates an incompressible deformation field u(x) on a high-resolution
grid within the tongue mask. The details are omitted here for lack of space, but
are given in [5]. We only note two important aspects. First, IDEA is carried
out as a series of smoothing splines, each of which seeks a divergence-free ve-
locity field yielding the deformation field only when integrated. Thus the final
field u(x) is nearly incompressible and its re-projected components at all input
points nearly agree with the input measurements. Second, the inputs are ob-
served components of displacements that can arise at any physical position and
in any sub-direction of motion. This is the key to utilization of surface defor-
mation measurements within the IDEA framework. In particular, as shown in
Fig. 2(c), the tongue surface may deform between time frames, and a point xs on
the surface at current time frame can be associated with a point on the reference
tongue surface. However, like the traditional aperture problem in optical flow,
we should not assume to know any tangential information about the surface dis-
placement. This leads to a perfect analogy with HARP data: observations about
surface normal deformation, if available, can be used in 3D reconstruction.

2.3 Measuring Tongue Surface Deformation

IDEA requires segmentation of the tongue volume in order to limit the tissue
region that is assumed to be incompressible [8]. Cine MR images are used to
construct a super-resolution volume [9] at each time frame, which is then manu-
ally segmented for the tongue surface mask. We notice that these 3D masks can
also be used for deformable registration in order to provide surface deformation
information.

The diffeomorphic demons method [10] is applied to the pair of masks be-
tween the two time frames where motion is to be computed. Denoting the refer-
ence mask at time frame 1 as I1 : Ω1 ⊂ R3 → {0, 1} and the current deformed
mask as It : Ωt ⊂ R3 → {0, 1} defined on the open and bounded domains Ω1

and Ωt, the deformation field is found and denoted by the mapping d : Ωt 7→ Ω1.
The estimated displacement field at a point xs on the surface of the tongue in
current time frame can be denoted as

u(xs) = −d(xs) . (3)

Although diffeomorphic demons generates a whole 3D displacement volume, we
take only tongue surface normal components for the reason stated in the pre-
vious section. We represent the 3D tongue mask at current time frame by a
levelset function φ(x) that is zero on the surface, positive outside the tongue,
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and negative inside the tongue. The normal directions of the surface are given
by

n(xs) =
∇φ(xs)

|∇φ(xs)|
. (4)

The normal components of motion—serving as additional input to IDEA—are

qn(xs) = (u(xs) · n(xs))n(xs) . (5)

An example of such a field is shown in Fig. 1(d).

2.4 Enhanced IDEA

With the enhanced input {xa,qx(xa),xa,qy(xa),xc,qz(xc),xs,qn(xs)}, our pro-
posed method computes the 3D motion over the super-resolution grid points {xi}
and all the surface points {xs}. The algorithm is summarized below.

Algorithm. Enhanced Incompressible Deformation Estimation Algorithm

1. Set u(xi) = 0 and u(xs) = 0.
2. Set M time steps, for m = 1 to M do
3. Project currently computed displacement onto input directions by px(xa) =
u(xa) · ex, py(xa) = u(xa) · ey, pz(xc) = u(xc) · ez, pn(xs) = u(xs) · n(xs).
4. Compute remaining motion projection by rx(xa) = qx(xa)−px(xa), ry(xa) =
qy(xa)− py(xa), rz(xc) = qz(xc)− pz(xc), rn(xs) = qn(xs)− pn(xs).
5. Use part of the remaining motion to approximate velocity: vx(xa) = rx(xa)/(M−
m+ 1), vy(xa) = ry(xa)/(M −m+ 1), vz(xc) = rz(xc)/(M −m+ 1), vn(xs) =
rn(xs)/(M −m+ 1).
6. Update estimation: u(xi) = u(xi) + DFVS{vx(xa), vy(xa), vz(xc), vn(xs)},
u(xs) = u(xs) + DFVS{vx(xa), vy(xa), vz(xc), vn(xs)}.
7. end for

Here DFVS stands for divergence-free vector spline, which is also the key algo-
rithm “workhorse” of IDEA [5]. M is typically set to 20 which provides a proper
trade-off between accuracy and computation time. Enhanced IDEA, which we
refer to as E-IDEA below, typically takes about 5 hours on 26 time frames.

3 Results

We evaluated E-IDEA on 50 tongue volumes (25 from a normal control and
25 from a patient) during the utterance “asouk”. Conventional IDEA was also
computed for comparison. The motion fields were all relative to time frame 1
which was the /a/ sound.

Firstly, we visually assessed the motion fields. The results of both the control
and the patient are shown in Figs. 1(c), 1(e) and Fig. 3 on two critical time
frames: at the /s/, when forward motion is prominent, and at the /k/, when
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upward motion is prominent (Fig. 1 is for control at time frame /s/). In general,
E-IDEA has reduced the erroneous large motions that happen at the back of
the tongue. For the control, it has also captured the subtle down-and-forward
motion near back top tongue produced by the styloglossus muscle at time frame
/s/, and straightened up the motion at the top of the tongue to capture the
displacement when the tongue hits the palate vertically for the sound /k/. The
patient has a glossectomy “hole” in the tongue which makes the overall motion
smaller. E-IDEA has captured all these small motions even at the tongue back
where IDEA mistakenly interpolates for zero motion. Visually, the boundary
estimation has become more sensible.

Fig. 3. Visual comparison of conventional IDEA result and E-IDEA result.

Secondly, to obtain a numerical comparison, we manually tracked the motions
of 15 surface points distributed 5 each on the front, top, and back parts of the
tongue (labeled in Fig. 4(a)). We then computed the tracks of the same points
with IDEA and E-IDEA motion fields. The point tracks of three methods on the
control are shown in Fig. 4(a) and the errors from manual tracking in magnitude
at each point are shown in Figs. 4(b) and 4(c), boxplotted across all time frames.
We see that in general the error has been reduced by E-IDEA, especially on the
back part of the tongue. Also, the mean of errors (circles in boxes) is reduced
by E-IDEA at all 15 points. The improvement is significant (p = 0.00003).
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Fig. 4. Comparison of IDEA and E-IDEA with manually tracked surface points. (a)
Tracks of the control surface points by manual (blue), IDEA (yellow), and E-IDEA
(green). (b) Boxplot of error magnitude for the control (bar in the box is median and
circle in the box is mean). (c) Boxplot of error magnitude for the patient.

Lastly, for each time frame, we took the estimated 3D motions at the input
sample locations and re-projected them onto the input directions using Eqns. (1)
and (5). We then computed a reprojection error that gives the error in distance
in the input directions between the estimated sample components and the input
sample components. This measure assumes that the input motion components
(HARP and surface normal motions) are the truth. Histograms of these repro-
jection errors are shown in Fig. 5. We compare four types of reprojection errors
in this figure: on conventional IDEA internal points, on E-IDEA internal points,
on E-IDEA boundary points, and on conventional IDEA boundary points as
indicated in the legend. For the control, on a total of 105455 internal points and
108853 boundary points, the mean of the four errors are: 0.32 mm, 0.35 mm,
0.65 mm, and 1.33 mm, respectively. The boundary error has been reduced by
0.68 mm and the internal error has been raised by 0.03 mm. For the patient, on
133302 internal points and 100523 boundary points, the mean of the four errors
are: 0.22 mm, 0.24 mm, 0.96 mm and 3.11 mm. The boundary error has been
reduced by 2.15 mm and the internal error has been raised by 0.02 mm.

Fig. 5. Regularized histogram of IDEA and E-IDEA’s reprojection error on internal
and surface points. Dotted lines show the mean of four types of reprojection error.
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4 Conclusion and Discussion

We have proposed a novel algorithm for estimating the tongue’s motion field
in 3D. The major innovation is in the incorporation of surface motion as addi-
tional information, which compensates for the well-known deficiencies of HARP
in estimation of boundary motions and in inadequate data sampling due to the
limitations during data acquisition. Visual comparison shows improvement and
quantitative improvement is evident using two independent metrics. Especially,
from reprojection experiment, we see that boundary error is substantially re-
duced while internal error is only minimally increased by E-IDEA.

This method is in an early stage of development. Aspects that will be ad-
dressed in the future include the segmentation and registration methods; it would
be highly desirable to fully automate segmentation algorithm and to optimize the
registration step by applying it to intensity data rather than the masks. There
are limitations on the dataset because dependency between volumes of the same
subject has not been accounted for. It is also desirable for the application of a
data reliability term to express the difference in reliability between HARP and
registration data. All of these steps are being carried out in ongoing work.
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