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Abstract

For clinical and scientific studies, it is important to understand the internal muscle

motion of the tongue during speech and the heart in its beating cycle, which are

made entirely of soft tissue, mostly muscle. Magnetic resonance (MR) tagging places

non-invasive and temporary markers (tags) inside the soft tissues in a pre-specified

pattern, yielding images that carry information about motion in the tagging direction.

These images can be processing using harmonic phase (HARP) method to compute

the in-plane motion. The dissertation studies the three-dimensional (3D) muscle

motion using MR tagging with a focus on tongue imaging, and addresses the technical

challenges in both 2D and 3D motion estimation.

In the dissertation, we developed HARP tracking refinement methods to reli-

ably and automatically track the whole tissue from tagged MRI even when tradi-

tional HARP tracking fails. We measured 3D tongue motion during speech by re-

implementing and optimizing the zHARP imaging sequence, and using a specialized

MR triggering and vocal repetition method. We developed a thin plate spline based

3D tongue motion tracking method using tagged MR images by extending the 3D-



HARP method for cardiac motion tracking. We developed a method to reconstruct

a 3D, dense, incompressible deformation field from tagged MR images based on the

divergence-free vector spline with incomplete data samples, and applied it to both

tongue and cardiac motion reconstruction. Finally, we performed preliminary studies

of the internal tongue motion pattern and muscle mechanisms of glossectomy patient

and compared them with normal speakers.

Primary Reader: Dr. Jerry L. Prince

Secondary Readers: Dr. Gregory D. Hager and Dr. Maureen Stone
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Chapter 1

Introduction

1.1 Motivation

Muscle motion directly contributes to the movement of human body, and also

causes the movement of certain internal organs. This is especially true for the or-

gans that are almost completely made of muscles, i.e., the heart and the tongue,

whose functions are determined by the underlying muscle motion. Therefore a good

knowledge of the muscle motion can not only benefit scientific studies of the organ

functions, but also directly contribute to early diagnosis of certain diseases and better

surgical planning.

The tongue is crucial for speaking, swallowing, and breathing. It contributes

to speech by shaping the vocal tract through tongue shape changes. Since there

is no bone in the tongue, the speech and the tongue shape change are produced
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through tongue muscle activation. A better understanding of the tongue function

requires knowledges of its internal deformation patterns and their relationship to the

underlying muscle activity. In addition, oral cancers have the 7th highest incidence in

the United States. Among them tongue cancer incidence has shown a recent five to

six-fold increase in young adults aging 20 to 44 years and a two-fold increase in older

adults [1]. Although tongue cancer is not considered fatal [2], it may cause significant

problems in speech, mastication, and swallowing, and affect the patient’s life quality.

Glossectomy is often performed to treat tongue cancer by removing the cancerous

tissue in the tongue, followed by primary surgical closure or reconstruction with flaps

or skin grafts. However, it is not very well understood how the patients adapt to

the surgery or which types of surgical reconstruction are better for the patients to

retain tongue functions, especially speech. To help answer these questions, we need

to better understand the motion patterns of glossectomy patients and compare them

with those of normal speakers.

The human heart is responsible for pumping blood through the circulatory sys-

tem. Its correct functioning is essential to the human body. Cardiovascular disease is

the number one cause of death and disability in the United State and most European

countries. It is estimated that 80,000,000 Americans adults (approximately one in

three) have at least one cardiovascular diseases, and every 37 seconds an American

dies of cardiovascular disease [3]. About 5.3 million Americans are affected by heart

failure. The treatment of these diseases costs more than $448.5 billion a year in
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America in 2008. The left ventricular function of the heart is known to be a sensi-

tive indicator of cardiovascular diseases, for example ischemia and infarction [4–7].

Therefore regional ventricular function analysis can help characterize and detect cer-

tain heart diseases [8], and it is often performed by measuring the motion of the

heart.

Among medical imaging techniques, magnetic resonance imaging (MRI) has shown

advantages for imaging muscle motion because it has no radiation, superior temporal

and contrast resolution in soft tissues, and adequate SNR. MRI has been capable of

capturing information about motion within the interior of muscles since the develop-

ment of tagging. MR tagging was originally developed on cardiac imaging and has

been applied to tongue motion imaging because of the similar tissue properties be-

tween the heart and the tongue. Tagged MRI contains detailed motion information in

the image plane, and can be post processed to achieve useful measurements of muscle

motion for both scientific and clinic purposes.

This thesis focuses on the study of three-dimensional (3D) muscle motion of the

tongue using MR tagging. We address the technical challenges of both 2D and 3D

tongue motion estimation, including reliable 2D tracking, fast imaging of 3D motion,

3D tracking, and dense 3D motion field reconstruction. We perform preliminary stud-

ies on the motion patterns of the tongue during speech for both normal speakers and

glossectomy patients. We also study cardiac imaging because the tagged MR images

of the heart and the tongue share many common properties; as well, historically most
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MRI motion measurement techniques were developed in the heart and subsequently

adapted for the tongue.

1.2 Anatomy of the Tongue and the Heart

The tongue has a very complex muscular architecture, and is incompressible

(volume-preserving). It consists of eight muscle pairs, four extrinsic muscles (hyo-

glossus, styloglossus, palatoglossus, and genioglossus) and four intrinsic muscles (ver-

ticalis, transversalis, and superior and inferior longitudinalis) with a unique and com-

plex muscle fiber organization. The intrinsic muscles lie completely inside the tongue,

and function to change the tongue shape by lengthening and shortening, flattening

and rounding its surface, and so on. The extrinsic muscles insert into the tongue and

attach the tongue to outside structures, and function to reposition the tongue and

make it protrude, retract, depress, and elevate. The intrinsic and extrinsic muscles

work together to create the complex deformations for speech and swallowing. Fig. 1.1

shows the shape of the tongue and its muscle structure.

The human heart is made of cardiac muscles that are self-exciting and capable of

continuous beating. It beats about 100,000 times per day. The human heart consists

four chambers: left atrium, left ventricle (LV), right atrium, and right ventricle (RV)

(see Fig. 1.2). The ventricles are separated from the atria by one-way valves which

keep blood flowing through the heart in the correct direction. Each cardiac cycle can
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Figure 1.1: Left: The mid sagittal diagam of the tongue (from Patrick J.
Lynch, Radiopaedia.org). Right: The muscle structure of the tongue (from
http://www.yorku.ca/earmstro/).

be divided into two stages: systole and diastole. During systole, the muscles of both

the left and right ventricles contract. The blood in the left ventricle is pumped out

into the aorta and circulates through the entire body, while the blood in the right

ventricle is sent to the lungs through the pulmonary artery. During diastole, the

ventricles relax and are refilled with circulating blood. The blood pressure increases

during systole, and decreases during diastole.

1.3 Imaging the Tongue and the Heart

MRI is considered the gold standard for quantitative assessment of cardiac struc-

ture and function [9, 10]. Regional changes in myocardial performance (contractile

function) can be assessed using tagged MRI [11–13], phase contrast MRI [14], and

strain rate MRI [15]. Although the heart and the tongue have different structures
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Figure 1.2: The anatomy of the heart. The long axis of the left ventricle is repre-
sented by the dashed line. The solid lines represent short axis image planes (from
http://www.washingtonhra.com/2.html).

and different functions, they are both made of muscles and have similar contrast in

MR images. Therefore many MR imaging methods that were first developed for one

application can be carried over to the other.

In cardiac imaging, the image planes are defined relative to the orientation of the

heart, and are oblique to the conventional sagittal, axial, and coronal planes. The

long axis (LA) image planes go through the long axis, which is defined as the line that

passes through the apical point of the left ventricle and the mitral valve orifice (see

Fig. 1.2). LA images are usually acquired in radial orientations. The short axis (SA)

image planes are perpendicular to the LA. Examples of cardiac images are shown in

Fig. 1.3.
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: A sequence of cine cardiac MR images on a short axis image plane during
systole in the order from (a) to (f).

To capture cardiac motion during a heartbeat, a temporal series of images are

acquired and this is called cine MRI. Cine cardiac MRI is acquired in multiple heart

beats using ECG gating. From cine MRI, one can measure the progression of heart

motion by tracking the myocardial boundary, from which other useful quantities —

myocardial wall thickness, ejection fraction, and so on — can be measured. How-

ever, since the myocardium appears homogeneous it does not provide information to

quantify the internal muscle deformation in the myocardium, i.e., it cannot differen-

tiate the motion variation between the epicardium and endocardium. This drawback

is overcome by tagged MR imaging [11–13]. Tagged MRI places temporary planar

markers (tags) within myocardium. The tags are usually placed at end-diastole, and
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Figure 1.4: Tagged MR image sequence of a human heart on a short axis plane. The
tags deform as the heart contracts during systole (shown from left to right). Top row:
horizontally tagged images. Bottom row: vertically tagged images.

images are captured throughout the cardiac cycle. As the tags move with tissue, the

internal deformation of the myocardium can be observed by tracking the tags. Fig. 1.4

shows examples of tagged MR images of a human heart on an SA plane. The detailed

information about myocardial deformation makes it possible to compute many other

regional function measurements, e.g., displacement, velocity, rotation, translation,

elongation, strain, and twist.

In tongue imaging, multiple repetitions of a speech utterance are used (instead of

multiple heartbeats in cardiac imaging) to generate a time-series of images showing

its motion. Measuring the tongue dynamics is challenging because because (1) the

tongue moves deep within the vocal tract, (2) tongue motion has a high number of

degrees of freedom, and (3) tongue motion is rapid during speech and swallowing. In
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speech research, MRI was first introduced to capture static images of steady state

vowels [16] in anatomical studies [17, 18], disease examinations [19, 20], and build-

ing acoustic tube models by extracting the vocal tract [21–27]. Cine MRI has also

been applied to capture the tongue motion during speech. The images are usually

acquired over multiple repetitions of a speech utterance to achieve adequate spatial

and temporal resolution [28–30], or using one repetition per slice with relatively low

temporal and spatial resolution [31–34]. The images are usually collected in standard

image orientations, i.e., sagittal, coronal or axial. As in cardiac imaging, cine MRI

is valuable in the study of tongue surface motion, but not in measuring the muscle

deformation of the tongue body.

The ability of tagged MRI to image internal tongue motion was first demonstrated

by Niitsu et al. [35]. Later Napadow et al. [36, 37] applied tagged MRI to compute

principal strains of tongue muscles during non-speech motions. These approaches

applied the tags at the rest position, and an image was captured with deformed tags

during or after the movement. Later this was improved by combining tagged MRI

with cine MRI to create cine tagged MRI [38, 39]. These images can be processed

similar to the cardiac tagged MR images to compute useful measurements of tongue

motion.
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Figure 1.5: Tagged MR image sequence of a tongue on a sagittal plane. The images
were acquired when the subject said “eeoo” repetitively, and are shown from left to
right in order. The tongue region is circled in the top left image. Top row: horizontal
tag. Bottom row: vertical tag.

1.4 3D Tagged MR Image Acquisition

Tagged MR images contain only motion information in the normal direction of

the tag planes as illustrated in Fig. 1.6. Point x on the image plane moves from

p at the reference time frame. From the planar image, it can only be determined

that x originates from somewhere on the tag plane, but its location on the plane is

unknown. Thus the full displacement vector u(x) cannot be determined. Instead

only the component of u in the normal direction (e) of the tag plane can be measured

(shown as w in Fig. 1.6). In fact the components of in-plane motion can be computed

by acquiring two images with different tag directions at the image plane, but the

through-plane motion cannot be computed from this image plane alone.
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Figure 1.6: Displacement measurements from tagged images.

To measure the motion components in three dimensions, multiple images must be

acquired in different image orientations with tags applied in different directions. In

cardiac applications, tagged MR images are acquired in both short axis (SA) and long

axis (LA) image planes. The relative locations of LA and SA images are illustrated in

Fig. 1.7. On each SA plane, typically two images are acquired; one is with horizontal

tags and contains motion information in the x-axis, and the other is acquired with

vertical tags and contains motion information in the y-axis. The LA images are

tagged in the horizontal direction only, and contain motion information in the z-axis

(Fig. 1.7).

The tongue images are usually acquired in two orthogonal orientations, i.e., axial
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Figure 1.7: Cardiac tagged MR image acquisition for 3D motion.

and sagittal, axial and coronal, or sagittal and coronal orientations. In one orienta-

tion, two sets of images are acquired on multiple parallel planes with horizontal and

vertical tags respectively. In the other orientation images are acquired with tags in

the through-plane direction of the first image orientation. Fig. 1.8 shows an example

configuration in which both horizontally and vertically tagged images are acquired

on axial planes, and horizontally tagged images are acquired on sagittal planes.

The motion that can be measured directly from either of the cardiac or tongue

acquisition protocols is incomplete and sparse. It is incomplete because only partial

motion information is available for points on the images. We take the configuration
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Figure 1.8: Tongue tagged MR image acquisition for 3D motion.

of tongue image acquisition in Fig. 1.8 as an example and show the collection of

acquired images within a volume in Fig. 1.9. For points on the axial image planes we

can only know the 2D motion projections in the x and y axes from the orthogonally

tagged image pairs, and for points on the sagittal image planes we can only know

the 1D motion projections in the z axis. The complete 3D motion is measured only

for points on the intersection lines of the image planes (the red lines in Fig. 1.9). In

addition, the imaged points (whether completely or partially measured) are sparsely

distributed in space. Because of the limitation of imaging time, the image planes in

each orientation are usually acquired far apart such that the slice separation is much

larger than the in-plane image resolution. No motion measurements are directly
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Figure 1.9: The motion measurements that can be directly computed from 3D tagged
MR image acquisition. The 3D displacement vector can be directly computed only
on the intersection lines of the images (marked in red in the figure). Only 1D or
2D projections of the actual 3D displacements can be computed from other imaged
points.

acquired in the spaces between the slices.

For complete regional function analysis of the tongue and the heart, these sparse

and incomplete motion measurements must be combined together to generate dense

and complete 3D muscle motion.

1.5 Challenges in 3D Motion Analysis us-

ing Tagged MRI

The analysis of muscle motion using tagged MRI is challenging in several aspects.

First, it is required to reliably compute in-plane motion from the planar images for

2D motion analysis, and also for 3D motion analysis since the 3D motion recon-
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struction requires the in-plane motion be correctly computed from all the imagess.

The harmonic phase (HARP) method [40–42] is advantageous over other tagged MRI

processing methods because it can accurately track every pixel in the image and is

not limited to tracking points on tag lines. However, HARP tracking suffers from

mistracking because it implicitly assumes that tissue points do not move much from

one time frame to the next. When this assumption is violated, HARP tracking will

fail. Manual correction of mistracked points is an unpractical task especially in the

research of tongue motion, because parts of the tongue move very fast in some utter-

ances relative to the temporal resolution of the scan and are likely to be mistracked.

Therefore an automatic and fast method for robust 2D tracking is required to improve

subsequent 3D motion analysis.

The second challenge is to reconstruct dense 3D muscle motion from the sparse and

incomplete motion measurements while preserving important mechanical properties

of the muscles. Incompressibility is an important physical property of biological

tissues including the tongue and cardiac muscles. However this property has been

largely ignored by previous 3D motion reconstruction and interpolation methods.

Existing methods that do take incompressibility into consideration assume that the

deformation is small, which is not correct for large motion and may result in large

error. The reconstruction of 3D, incompressible, dense motion fields from the tagged

MR images remains a challenging problem.

Third, because of the importance of the heart, regional functional analysis of the
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LV has been a hot topic for years and lots of innovative research and new imaging

techniques have been developed, such as 3D-HARP, a 3D tracking method of points in

the LV of the heart using HARP, and zHARP, a new imaging and image processing

technique that can image 3D cardiac motion on one single image slice. Many of

these techniques developed on the heart can be adapted to the motion analysis of the

tongue. However, the adaption is often not straightforward because of the different

tissue structures and motion patterns between the tongue and the heart.

The fourth challenge is to explore the tongue motion patterns and mechanism and

relate them to certain tongue functions especially for glossectomy patients. Though

it has been of interest for many years, the internal tongue motion pattern during

speech is not fully understood. In order to better interpret clinical observations

and to provide data that can help predict optimal surgical outcomes, we need a

better understanding of the tongue motion patterns and the underlying mechanisms

of tongue muscles in both glossectomy patients and normal speakers.

1.6 Thesis Contributions

The contributions of the thesis are summarized as follows.

• We developed the shortest path HARP refinement method to address the HARP

mistracking problem by formulating a single source shortest path problem, and

solving it using Dijkstra’s algorithm. In this method, the image is represented as
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a graph and the points are tracked by following the resolved optimal refinement

paths. We also use synthetic phase images at the reference time and a two-step

tracking procedure to further prevent the mistracking caused by through-plane

motion. The method can reliably track every point inside the interested tissue,

and are very fast. Compared to the original HARP refinement idea [40], our

method is automatic, does not require a circular geometry or organized mesh

of points defined on the region.

As a preliminary work we also developed the region growing HARP refinement

method, in which the tissue points are tracked in a region growing process in

an order based on local HARP phase smoothness. The method works well

for tongue motion tracking, but it sometimes fails in cardiac motion tracking

because the tracking order is not optimal.

• We measured the 3D tongue motion on a single slice using a fast imaging method

called zHARP. We re-implemented zHARP with a gradient echo sequence and

Cartesian sampling on Siemens scanners, and optimized the imaging parameters

specifically for tongue imaging. To reduce motion artifacts, we also optimized

the image acquisition by designing and developing a specialized MRI scanner

triggering and vocal repetition method to better synchronize speech repetitions.

• We developed a method to reconstruct a dense representation of the 3D, in-

compressible displacement fields based on the sparse and incomplete motion
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observations computed from tagged MR images. At each time frame, the im-

ages are first processed using HARP and HARP refinement to measure the

partial motion information at each pixel from each time frame back to the ref-

erence time. The approach then applies a smoothing, divergence-free vector

spline to interpolate velocity fields at intermediate discrete times such that the

collection of velocity fields integrate over time to match the observed displace-

ment components. Through this process, the method yields a dense estimation

of the displacement field that matches the incomplete and sparse observations

and also corresponds to an incompressible motion.

We also developed a method to track 3D tongue motion on a sparse rectangu-

lar mesh using a thin-plate spline(TPS). The method extends the 3D-HARP

method [43] from the heart to the tongue. It iteratively tracks in-plane motion

on the intersection points of the mesh and the image planes using 2D-HARP

followed by TPS interpolation to extend the 2D motion to the whole mesh.

• We performed preliminary studies of the tongue motion patterns of glossec-

tomy patients and compare them with normal speakers. The first study applied

principal component analysis to examine the statistical motion pattern of the

midsagittal section of the tongue during elevation of the tongue body. By

comparing patient speakers to a set of normal speakers, we were able to quan-

titatively characterize the motion differences between the normal and patient

speakers. The second study analyzed the mechanical behavior of the inferior

18



longitudinal (IL) muscle during speech. We looked at the muscle deformation

for a normal speaker, a patient with a partial glossectomy and a radial forearm

free flap (RFFF), and examined whether their different tongue motion patterns

could be explained by the changes in muscle mechanics.

1.7 Thesis Organization

The thesis is organized as follows.

Chapter 2 includes background knowledge on MR tagging, the HARP method,

and strain calculation. In Chapter 3, we describe the region growing HARP refine-

ment method to address the mistracking problem of 2D HARP, and show the results

on tongue motion tracking. In Chapter 4, we describe the shortest path HARP re-

finement method, a method that further improves the HARP refinement results by

finding the optimal paths that connect tissue points with the seed. In Chapter 5,

we present a method for fast imaging and measurement of 3D tongue motion using

zHARP. In Chapter 6, we describe a method for 3D tongue motion tracking using an

iterative method based on thin plate spline interpolation. In Chapter 7, we present

an approach to reconstruct a 3D, dense, incompressible displacement field using the

incomplete and sparse sample data computed from tagged MR images, and apply the

approach to both the heart and the tongue. In Chapter 8, we describe preliminary

studies of the internal tongue motion patterns and muscle mechanics and compare
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between glossectomy patients and normal speakers. Finally, Chapter 9 summarizes

the conclusions and future work.
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Chapter 2

Background

In this chapter we provide a brief overview of MR tagging and tagged MR image

analysis. In Section 2.1, we first introduce the basics of MR tagging, including a

mathematical description of image formation. Section 2.2 describes the HARP pro-

cessing and tracking methods. In Section 2.3 we review existing 3D muscle motion

reconstruction methods. Section 2.4 overviews the computation of strain, a com-

mon measurement for tissue functional analysis. Finally, Section 2.5 summarizes this

chapter.

2.1 MR Tagging

Magnetic resonance (MR) imaging is capable of directly imaging motion of soft

tissues. Traditional MR images carry information about motion only at the bound-
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Figure 2.1: 1-1 SPAMM tagging pulse sequence.

aries of tissues because the image intensity of the interior of the tissues is largely

homogeneous. MR tagging [12,13] places non-invasive and temporary markers (tags)

inside the soft tissues in a pre-specified pattern, yielding images that carry information

about motion within homogeneous tissues. This complements traditional anatomical

images, and enables the detailed imaging of the motion of tissues such as the heart

and the tongue throughout the time. Displacement, velocity, rotation, elongation,

strain, and twist are just some of the quantities that can be computed from it.

MR tagging and spatial modulation of magnetization (SPAMM) have been impor-

tant imaging protocols for visualization and quantification of motion and strain since

their developments by Zerhouni et al. [11] in 1988 and Axel and Dougherty [12, 13]

in 1989, especially in myocardial imaging.
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As the most basic form of SPAMM, the 1-1 SPAMM approach generates a smoothly

varying sinusoidal tag pattern in the tissue. A typical pulse sequence with SPAMM

tagging is shown in Fig. 2.1. At each repetition, the tagging pulse is applied imme-

diately after a trigger signal is detected, followed by the acquisition of a sequence of

images. The trigger signal in cardiac imaging is the R-wave from the ECG signal,

which happens at the end of diastole. The tagging pulse consists of two equal RF

pulses with a modulating gradient pulse in between. To achieve the best tag contrast

and tag persistence, the flip angle of the RF pulses is set to 90o. After that, the

transverse magnetization is spoiled using large gradients.

The acquired image can be understood as the multiplication of the underlying

tissue anatomy with a two-dimensional sinusoidal function. The direction and the

frequency of the sinusoid is determined by the modulating gradient. Higher order

SPAMM tag patterns ( for example 1-4-6-4-1) can be produced using a linear com-

bination of several 1-1 SPAMM sequence, and can produce a thin and sharp tag

pattern on the tissue that is good for visualization and tag line detection. Herein we

consider only 1-1 SPAMM because this is optimal for use in HARP analysis. With a

[+90o, +90o] tagging pulse, the acquired image at time t after the tag is applied can

be expressed as

A(x, t) = M0(x, t)e−t/T1 cos(φ(x, t)) + M0(x, t)(1 − e−t/T1) , (2.1)

where e−t/T1 represents the T1 decay of the magnetization, and φ(x, t) is the phase

of point x at time t. When applying a [+90o,−90o] tagging pulse, the image can be
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expressed as

B(x, t) = −M0(x, t)e−t/T1 cos(φ(x, t)) + M0(x, t)(1 − e−t/T1) . (2.2)

The tagging patterns in these two images differ by a phase shift of π radians. Examples

of SPAMM image pairs are shown in Figs. 2.2(a) and (b) and Figs. 2.2(d) and (e). To

improve the tag contrast, the image pair A(x, t) and B(x, t) are acquired separately at

the same time of a repeated motion, and combined to yield a so-called complementary

SPAMM (CSPAMM) [44] image

ICSPAMM = A(x, t) − B(x, t) = 2M0(x, t)e−t/T1 cos(φ(x, t)) . (2.3)

The tag contrast of the CSPAMM images is twice that of the SPAMM images. When

we are only able to acquire the magnitude of the MR images, another method called

MICSR (magnitude image CSPAMM reconstruction) [45] can be used to improve the

tag contrast over plain SPAMM:

IMICSR = |A(x, t)|2 − |B(x, t)|2 = 4M2
0 (1 − e−t/T1)e−t/T1 cos(φ(x, t)) . (2.4)

Besides enhancing tag contrast, the CSPAMM and MICSR methods also remove the

constant bias through subtraction and produce images with pure sinusoidal tags.

Examples of MICSR images on the tongue are shown in Figs. 2.2(c) and (f).

The tagging phase φ(x, t) is a material property, and it does not change when a

point moves in space. Immediately after the tag is applied and the object has not

deformed, i.e., t = 0, the tag is a linear function of the spatial location. Let us denote
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Tongue images (a) and (b) form a pair of vertically tagged SPAMM
images with phase shifted tags, and (c) is the MICSR combination of images (a) and
(b). Images (d) and (e) form a pair of horizontally tagged SPAMM images and (f) is
the MICSR combination of images (d) and (e). (c) and (f) have been thresholded for
better visualization of the tags.

a material point at time 0 as X, and its location at time t as x(t) = X + u(x, t).

Then we have

φ(X, 0) = ke ·X , (2.5)

where e is a unit vector normal to the tag planes, and k is the tagging frequency. At

later time after tissue deformation, the tagging phase retains, i.e.,

φ(x, t) = φ(X, 0) = ke · (x − u(x, t)) . (2.6)
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2.2 Harmonic Phase (HARP) Method

Existing methods for tagged MR image processing and motion tracking can be

divided into two categories. The first category identifies and tracks either the inter-

sections of the tag lines [46–48] or the whole tag lines [49–52] from the 2D images.

The motion on other points within the image can be estimated from these sparse

measurements using model-based or model-free interpolation [47–50, 53–60]. The

methods in the second category include the harmonic phase (HARP) method [40–42]

and the Gabor filter bank-based method [61]. These methods compute the wrapped

tagging phases from the images, and track points based on the fact that the tagging

phases of material points are constant. Since the tagging phases are available on

every image pixel inside the tissue, a dense 2D displacement field is directly achieved

without interpolation.

The HARP method has been successfully applied in both the heart [40] and the

tongue [62], and has proven to be useful for both scientific and clinical applications.

It has shown to be advantageous to other methods because it is fast and accurate,

and therefore is used throughout this thesis for planar tagged MR image processing.

The HARP method includes two components: HARP processing and HARP tracking.

HARP processing computes the harmonic phase — the wrapped value of the tagging

phase — images by applying bandpass filters in the Fourier domain, and HARP

tracking computes the 2D motion based on the property that the harmonic phase

value is retained when a point moves.
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2.2.1 HARP Processing

The Fourier transforms of both CSPAMM and MICSR images have two harmonic

peaks which result from the sinusoidal function (see Eqns. (2.3) and (2.4)). The

Fourier transforms of SPAMM images have an additional spectral peak at the center

that results from the second term in Eqns. (2.1) and (2.2). Figs. 2.3(a) and (b) show

an example SPAMM image and its Fourier transform, respectively. To estimate the

phase value φ(x, t) from the tagged images, the HARP method applies a bandpass

filter to extract just one of the harmonic peaks (see the circle in Fig. 2.3(b)). The

resulting filtered complex image can be expressed as

I(x, t) = D(x, t)ejφ(x,t) , (2.7)

where D(x, t) is called the harmonic magnitude image, and φ(x, t) is the harmonic

phase (HARP) image. The magnitude image reflects the tissue anatomy, and the

HARP image contains the tissue motion information. Because the HARP phase

must be computed using an arctangent operation, its value θ(x, t) is the principal

value of the true phase. It is therefore restricted to take on values in the interval

[−π, +π), and is related to the true phase by

θ(x, t) = W (φ(x, t)) , (2.8)

where W (·) is the wrapping function defined as:

W (φ) = mod(φ + π, 2π) − π . (2.9)
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(a) (b) (c) (d)

Figure 2.3: (a) Part of a SPAMM tagged MR image of the heart, (b) the magnitude of
its Fourier transform, (c) the harmonic phase image and (d) the harmonic magnitude
image after applying the bandpass filter as in (b). The harmonic phase image is
masked for visualization purpose so that only phases of the tissue points are shown.

The true phase and harmonic phase are both material properties of tissue points.

Thus, the HARP values of a material point do not change as the point moves around

in space. This property is called phase invariance and is the basis of HARP motion

tracking.

2.2.2 HARP Tracking

The HARP image θ(x, t) contains information about tissue motion in the normal

direction of the tag plane e. To track the 2D apparent motion of a material point, one

needs two HARP images which are generally acquired with orthogonal tag directions.

Let Φ = [φ1, φ2]
T , and φ1 and φ2 be the tagging phases of the two orthogonally tagged

images. For a material point located at x(ti) at time frame ti, we look for a point
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x(ti+1) at time ti+1 such that

Φ(x(ti+1), ti+1) = Φ(x(ti), ti) . (2.10)

Solving for x(ti+1) is a multidimensional root finding problem, which can be solved

iteratively using the Newton-Raphson technique, as follows

x(n+1)(ti+1) = x(n)(ti+1) −∇Φ(x(n)(ti+1), ti+1)
−1(Φ(x(n)(ti+1), ti+1) − Φ(x(ti), ti)) ,

(2.11)

with x
(0)
ti+1

= xti .

Since the corresponding HARP values Θ = [θ1, θ2]
T are just the principal values

of the true phase Φ, Eq. (2.11) cannot be used directly. If one assumes, however, that

any material point moves less than half of the tag separation from one time frame to

the next in both tag orientations—i.e., |φk(x(ti), ti+1)− φk(x(ti), ti))| < π, k = 1, 2—

then it can be shown that

Φ(x(n)(ti+1), ti+1) − Φ(x(ti), ti) = W (Θ(x(n)(ti+1), ti+1) − Θ(x(ti), ti)) . (2.12)

Moreover, the gradient of Φ can be written as

∇Φ = ∇∗Θ = ∇∗[θ1, θ2]
T , (2.13)

where

∇∗θk =



















∇θk, ||∇θk|| ≤ ||∇W (θk + π)||

∇W (θk + π)||, otherwise

(2.14)
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for k = 1, 2. Eq. (2.11) can then be written as

x(n+1)(ti+1) = x(n)(ti+1)−∇∗Θ(x(n)(ti+1), ti+1)
−1W (Θ(x(n)(ti+1), ti+1)−Θ(x(ti), ti)) ,

(2.15)

which is computable from the underlying images.

Traditional HARP tracking is therefore just the iteration of Eq. (2.15) until

||x(n+1)(ti+1) − x(n)(ti+1)|| is below a pre-specified small number, or until a speci-

fied number of iterations is reached.

2.3 3D Motion Reconstruction

In a 3D acquisition as described in Section 1.4, tagged MR images provide sparse

and incomplete measurements of the 3D muscle motion, from which the dense and

smooth 3D motion must be estimated. In cardiac imaging, many 3D motion recon-

struction approaches have been developed using various structural models or inter-

polation models, especially for the left ventricle. Here we provide a brief review.

B-splines have been used together with spatial smoothness constraints to model

the cardiac deformation [55,56,58,59,63,64]. B-spline models are defined on Cartesian

coordinates, cylindrical coordinates [64], or planispheric coordinates [56]. Huang et

al. [59], Declerck et al. [56], and Ozturk et al. [58] used 4D deformable B-spline models

to reconstruct the motion both spatially and temporally. Instead of directly estimat-

ing the deformation, several other approaches used finite element models (FEM) to
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represent the LV shape. Young et al. [48,57] modeled the tag surfaces using FEM and

reconstructed the 3D cardiac deformation without prior identification of ventricular

boundaries or tag line locations. Park et al. [60] and Haber et al. [49] computed the

motion of both left ventricle and right ventricle using a 3D biventricular deformable

FEM. Methods have also been proposed using other models or direct interpolation.

O’Dell et al. [53] used a displacement field fitting method. Denny and Prince [50] re-

constructed the 3D motion of the LV using an estimation theoretic approach. Kerwin

and Prince [47] used a deformation model to track a sparse set of material points in

3D. Suter and Chen [65] interpolated the 3D left ventricle motion using elastic vector

splines. Pan et al. [43] placed a sparse cup-shaped mesh model inside the left ventri-

cle and iteratively tracked it in 3D based on HARP tracking. All of the mentioned

methods were based on the sparse and incomplete motion measurements from the 2D

images and therefore can be viewed as some kinds of interpolation.

Methods have also been developed to directly image 3D myocardial motion with-

out the need of interpolation. Ryf et al. [66] extended the 2D-CSPAMM tagging

sequence to 3D to acquire 3D tagged image volume. The 3D motion was then com-

puted by extracting spectral peaks in 3D Fourier space in a way similar to 2D HARP

processing. This method requires a very long acquisition time (∼ 16 minutes) and

is not feasible in regular clinical scan. Perman et al. [67] and Kuijer et al. [68] com-

bined in-plane tagging and phase-contrast imaging together to quantify the in-plane

motion and through-plane velocity simultaneously. Abd-Elmoniem [69, 70] recently
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developed the zHARP method that can encode and track 3D motion from a single

slice without increasing acquisition time.

The above methods were all originally developed for cardiac motion, and some of

them have been extended to the tongue [71,72]. These 3D motion reconstruction and

interpolation methods have either ignored the fact that tongue and cardiac muscles

are incompressible, or assumed that the deformation is small and may result in large

error for large motion.

2.4 Strain Calculation

Strain is a commonly used measure for deformation characterization and func-

tional analysis of tissues. It defines the amount of stretch or compression along

particular directions, and measures how much a given displacement differs locally

from a rigid-body displacement.

Consider a material point X that deforms to x under a displacement u(X), i.e.,

x = X + u(X). The deformation gradient tensor F is defined by

F =
dx

dX
= I +

du

dX
, (2.16)

with I being the identity matrix. F is a 3 × 3 matrix in 3D, and a 2 × 2 matrix in

2D. du/dX is called the material displacement gradient tensor. We also have

F−1 =
dX

dx
= I − du

dx
, (2.17)

where du/dx is the spatial displacement gradient tensor.

32



• Lagrangian Strain

The Lagrangian strain tensor is defined in terms of the material coordinate X, and

is given by

El =
1

2
(F T F − I) =

1

2

(

du

dX
+

du

dX

T

+
du

dX

T du

dX

)

. (2.18)

• Eulerian Strain

The Eulerian strain tensor is defined on the spatial coordinate x, and is given by

Ee =
1

2
(I − F−T F−1 =

1

2

(

du

dx
+

du

dx

T

− du

dx

T du

dx

)

. (2.19)

• Stretch Ratio and Normal Strain

The stretch ratio measures the strain of a differential line element. Consider a

vector v = ||v||n at material coordinate with n being a unit vector, and suppose

it deforms into vector w, the stretch ratio in the material coordinate is defined as

Λ(n) =
||w||
||v|| =

||Fv||
||v|| . (2.20)

We can also have

Λ2(n) =
vTFT Fv

vTv
= nTFT Fn . (2.21)

Similarly the stretch ratio for the spatial coordinate is defined as

1

Λ
=

||v||
||w|| . (2.22)

The normal strain is defined as

e(n) = Λ(n) − 1 . (2.23)
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In cardiac imaging, the circumferential and radial directions are the two common

directions for cardiac function analysis. The circumferential strain represents the

myocardial shortening, and the radial strain represents the myocardial thickening in

short axis plane. Let nc and nr be the circumferential direction and radial direction,

respectively. The circumferential and radial strains can be expressed as

ec = nT
c Enc , and

er = nT
r Enr .

2.5 Summary

In this chapter we briefly described the background knowledge of MR tagging

and the HARP method which computes in-plane motion from tagged MRI. We also

reviewed the 3D motion reconstruction methods the 2D measurements, and described

the computation of strain.
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Chapter 3

HARP Mistracking and Region

Growing HARP Refinement

3.1 Introduction

Two-dimensional (2D) in-plane motion tracking is an important part of the HARP

method because other quantities are often computed using these tracking results.

HARP tracking implicitly assumes that tissue points do not move very far from

one time frame to the next. If the tissue moves too fast, the temporal resolution

is too low, or the MR tag parameters are selected incorrectly, this assumption is

violated, and HARP tracking will fail. HARP tracking may also fail at points close

to tissue boundary, and at points moving in or out from the image plane due to

through-plane motion. Although such failures are relatively rare in typical well-



designed applications, careful scientific studies and robust clinical applications require

that the user manually identify and correct mistracked points. This can be very time-

consuming, to the point where large research studies take too much time and clinical

throughput is too low. In research on tongue motion, there are some utterances in

which parts of the tongue move quite fast relative to the temporal resolution of the

scan, causing inevitable HARP tracking errors. Efforts to track a very large number

of points thereby become extremely time consuming, as manual correction is routinely

required.

There have been some previous efforts to identify and automatically correct mis-

tracked points. Khalifa et al. [73] used an active contour model to correct HARP

tracking for cardiac motion. The approach is limited to the circular geometry, how-

ever, and is therefore not easily generalized for non-cardiac applications such as imag-

ing the tongue in speech. Tecelao et al. [74] proposed an extended HARP tracking

method to correct the mistracking caused by through-plane motion and boundary

effects, but it did not completely address the mistracking problem. Use of spatial

continuity of motion, generically called refinement, was described in Osman et al. [40]

as a process that could be employed to alleviate the mistracking described above. At

the time, refinement was thought to be overly time consuming to employ on a routine

basis. It was also developed on circular geometries, and is not straightforward to

extend to arbitrary tissue points.

To address the mistracking problem, we develop two new refinement methods
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for HARP tracking. These methods automatically track every point (pixel) inside

a given tissue (or even the whole image) and do not require a circular geometry or

organized mesh of points defined on the region. The first method is called region

growing HARP refinement (RG-HR) method. The method is based on seeded region

growing [75] with a tracking order determined by the local HARP phase smoothness.

The RG-HR method works well in tongue motion tracking, but may fail occasionally

in cardiac motion tracking. This is because the region growing process implicitly

connects every point to the seed through a path that is determined by the tracking

order. The local HARP smoothness is not enough to promise an optimal path, and

thus RG-HR may yield incorrect tracking. This is especially a problem in cardiac

motion tracking because the heart has a ring structure in the SA images, and in some

cases points in the blood pool can be tracked before all points in the myocardium are

tracked.

To address the problem of erratic tracking path, we develop another method called

shortest path HARP refinement (SP-HR) method. It further improves the RG-HR

method by representing the image as a graph and finding the optimal refinement

paths for all tissue points by solving a single source shortest path problem. In this

way each tissue point will be accessed via an optimal path from the seed point (which

is assumed to be correctly tracked). Cost functions defined on both the edges and

vertices of the (image-based) graph encourage the shortest path to stay within the

same tissue region as the seed point so that incorrect estimation from long paths in
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adjacent regions is much less likely.

In this chapter, we describe the RG-HR method in details. The SP-HR method is

described in Chapter 4. This chapter is organized as follows. Section 3.2 summarizes

the three cases of mistracking in 2D HARP. Section 3.3 briefly describes the original

HARP refinement idea. Section 3.4 describes the region growing HARP refinement

method in details. Section 3.5 shows experiment results on tongue motion tracking.

Section 3.6 provides a discussion on the results, and Section 3.7 summarizes the

chapter.

3.2 Mistracking in 2D HARP

Though HARP tracking works well in most scenarios, points can be mistracked

when the underlying assumptions are not satisfied. In general, mistracking can be

classified into three categories. First, mistracking can occur when a tissue point has

a large motion between two successive time frames. In this case, HARP tracking (see

Eq. (2.15)) will converge, but it finds a point that is one or more tag periods away

from the truth—this is called a “tag jumping” error. This kind of mistracking can be

alleviated by either improving the temporal resolution or decreasing the tag spatial

frequency, but this comes at the cost of decreased image resolution and poorer HARP

phase estimation. It may be impossible to take either of these steps in some scenarios

such as imaging the rapid movement of the tongue in speech.
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Second, the tissue point can be mistracked because of through-plane motion. In

the Lagrangian framework of HARP tracking, a material point is specified in the

first time frame and tracked through all later time frames successively. Because of

through-plane motion, the point may disappear in some time frames, and (possibly)

re-appear in some later time frames. Because the standard tracking approach moves

successively from one time frame to the next, when this occurs HARP tracking will

converge to an incorrect point during the lost frames and will not generally find the

correct point when it reappears.

Third, mistracking can happen at points close to the tissue boundary. The problem

is that the tracking equation (2.15) must start with an initial “guess” as to where the

point goes in the second frame in order to initialize the iterative process. If that initial

guess happens to be outside the tissue in the second frame, then phase noise, caused

by the lack of sufficient signal, will yield highly erratic, usually erroneous results.

In scientific and clinical applications, mistracked points must be manually iden-

tified and corrected by the user. This can be very time-consuming especially when

tracking a large number of points in rapidly moving tissue. For routine clinical appli-

cations and large-scale scientific studies, it is therefore imperative to find a method

that can correctly track all tissue points including these three classes of points that

are mistracked in standard HARP tracking.
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3.3 HARP Refinement

Standard HARP tracking relies on the temporal continuity of a point trajectory—

i.e., that a point should not move much from one time frame to the next. The idea of

using spatial continuity of motion to improve HARP tracking was first proposed by

Osman et al. [40] and was called HARP refinement. In the original HARP refinement,

points are tracked on concentric “circles” that are placed manually within the left ven-

tricular (LV) myocardium, as shown in Fig. 3.1(a). One point on this geometric con-

struct is manually identified as an “anchor point”—the asterisk in Fig. 3.1(b)—which

we will refer to as a seed point. This point generally has a very small displacement

over the entire cardiac cycle and can be certified by the user to be correctly tracked

by standard HARP. Starting from the seed point, an adjacent point (about a pixel

away) on the concentric circle is tracked next, wherein it is explicitly assumed that its

initial displacement, which defines the initialization of the tracking algorithm (2.15),

is equal to that of the seed point. The entire circle is tracked this way by assuming

the initial displacement of a given point is equal to the estimated displacement of the

previous point. This process, which is illustrated in Fig. 3.1(b), can also be applied

on radial paths in order to facilitate the tracking of all concentric circles.

This refinement method has several limitations. First, its success is overly tied to

the locations of the circles. In particular, if a single point on a circle is mistracked, it

is very likely that all the remaining points on the circle will also be mistracked. This

means that circles placed close to the edges of the myocardium may produce a large
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(a) (b)

Figure 3.1: (a) Concentric circles placed on the LV. (b) Processing order for a con-
ventional HARP refinement procedure. The asterisk shows the location of the anchor
point.

fraction of mistracked points despite refinement. Second, correctly tracked points are

limited to the circles and radial lines, which means that strain computations must

be Lagrangian in nature and are not densely computed on the object of interest.

Finally, although the approximately circular shape is useful for the LV, alternative

shapes would have to be developed for other objects of interest such as the RV and

the tongue.

3.4 Region Growing HARP Refinement

The region growing HARP refinement (RG-HR) method is developed to address

limitations of HARP refinement. It is observed that the motion field within the tissue
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is smooth — e.g., the displacements of neighboring tissue points are similar. For two

neighboring 2D points x(t1),y(t1) at time frame t1, and at time t2 they move to

x(t2)and y(t2), then the difference between their displacements

∆(x,y, t1, t2)) = |(x(t2) − x(t1)) − (y(t2) − y(t1))| (3.1)

is small. So if y(t2) can be tracked correctly from y(t1), a good estimation of x(t2) is

x′(t2) = x(t1) + (y(t2) − y(t1)) . (3.2)

Therefore x′(t2) can be used as the starting point when tracking x(t1) to prevent

HARP tracking from failing.

There is usually some part of the tissue that has relatively small motion and can

be tracked correctly using HARP over all time frames. For example, the bottom part

of the tongue is relatively stationary in speech. Hence, it is easy to manually identify

a few seed points where the traditional HARP tracking succeeds.

The RG-HR algorithm is based on the above facts, and is described in details

below.

3.4.1 RG-HR Algorithm

The RG-HR algorithm is based on seeded region growing [75]. It starts with one

manually identified seed that can be correctly tracked between two time frames using

traditional HARP tracking. Since the tracking between different time frames is done
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independently, we consider only the tracking from one time t1 to another time t2 in

the following.

A data structure called sequentially sorted list (SSL) [75] is used in this algorithm.

The points in the SSL are sorted based on a cost function (described below) that

reflects the likelihood that a point lies inside the tissue and is good to be tracked

next. The SSL is maintained throughout the algorithm, and it stores the points that

have at least one tracked neighbor point. When the algorithm starts, the neighbor

points of the tracked seed are identified and put into the SSL. At each iteration, the

first point in the SSL, which has the lowest cost value, is taken off the list and tracked,

and its neighbors are inserted into the SSL based on the cost function value. The

process is repeated until the list is empty.

The points in the SSL are called boundary points. Each entry on the list contains

the following information: the point’s 2D coordinate x(t1) at time t1, an initial esti-

mate of its location in the next time frame x′(t2), and a cost value C(x(t1)) (defined

below). x′(t2) is computed using (3.2), assuming that x(t1) has the same displace-

ment as its tracked neighbor when it is inserted. The list is sorted in the ascending

order of the cost value. At each iteration, the first entry is fetched and removed from

the SSL. The point in this entry, x(t1), is tracked using traditional HARP tracking

but starting from x′(t2) instead of x(t1). Because the actual location x(t2) is close to

x′(t2) (as discussed above), HARP tracking is highly likely to converge to the correct

position. After that, those neighbors of x(t1) that have not been tracked and are
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(a) (b)

Figure 3.2: Illustration of region growing process on the image grid. At the beginning
of the algorhtim ((a)), a seed point is given. Its four neighbors are then put into the
SSL. (b) shows the status at an intermediate step. First the first point in the SSL
(solid triangle) is removed from the SSL and tracked. Then its neighbors that are not
tracked and not in the SSL are inserted into the SSL (hollow circle) based on their
cost values.

not already labeled as boundary points are inserted into the list based on their cost

values. The estimated locations of newly inserted neighboring points at time t2 are

computed using (3.2). An example is displayed in Fig. 3.2. In this example 4-neighbor

connectivity is assumed, though 8-neighbor connectivity can be used instead without

much difference.

It is important to track every point inside the tissue first before growing the

region into non-tissue regions. This is because the HARP value is quite noisy in the

air, blood, or bone, where no tag pattern can be found in the image. To encourage

the region growing process to visit tissue points first, the cost function that we use

to sort the SSL is defined as the phase similarity function:

C(x(t1)) =
2
∑

i=1

|W (φi(x(t1), t1) − φi(x
′(t2), t2))| . (3.3)
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Since the phase values inside the tissue are smooth, for a point inside the tissue

the wrapped difference between its actual phase (φi(x(t1), t1)) and the phase at its

estimated location is small, and the cost function has small value. Therefore the point

is placed at the front of the SSL and is visited early.

3.4.2 Implementation of RG-HR Algorithm

This algorithm can be implemented as in Algorithm 3.1.

3.5 Results on Tongue Motion Tracking

Our method was applied on the tagged MR images of the tongue. The images

were collected on a 1.5T Marconi scanner when the subject uttered “eeoo” repeatedly.

The images were acquired in 12 time frames with a temporal resolution of 66 msec.

The interpolated spatial resolution was 1.09 mm × 1.09 mm and the slice thickness

was 7 mm. Four sets of SPAMM images were collected: horizontal tagging with [+900

+900] and [+900 -900] , and vertical tagging with [+900 +900] and [+900 -900] tagging

pulses. As preprocessing, the MICSR [45] images were reconstructed from these 4 sets

of data. Our method was implemented in C, and compiled in Matlab 7 (Mathworks,

Natick MA). On a computer with Intel Core Duo 1.83 GHz processor and 1.0 G ram,

our implementation took about 0.2 second to track an 128 by 128 image for one time

frame.
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Algorithm 3.1 Region growing HARP refinement (RG-HR)

1: Track manually selected seed point(s) over all time frames.

2: for all time frame ti do

3: Create the SSL, and insert the seed.

4: while the SSL is not empty do

5: Remove the first node x(ti) from the SSL.

6: Find x(ti+1) using HARP tracking.

7: Label x(ti) as tracked point.

8: for all neighbor yk(ti) of x(ti) do

9: if not tracked point and not boundary point then

10: Calculate y′
k(ti+1), and the cost C(y(ti)).

11: Insert yk(ti) in the SSL based on C(y(ti)).

12: Label yk(ti) as boundary point.

13: end if

14: end for

15: end while

16: end for

Fig. 3.3 shows the intermediate results of the region growing process on the mid-

sagittal slice. Starting from the seed point, the points inside the tongue were tracked

first. The outside points were tracked only after all points inside the tongue were

tracked.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Illustration of the region growing process in RG-HR. (a) is the checkboard
image at the first time frame by overlaying the two tagged images with different
orientations, (b) is the checkboard image at the second time frame. The red dot in
(a) is the manually selected seed point. (c-f) shows how the region grows. The green
color means tracked points, brown means boundary points, and blue means points
that are not tracked and not boundary points.
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(a) (b)

Figure 3.4: The trajectories of selected points on tagged MR image over 12 time
frames. (a) is the results of traditional HARP tracking. The points in the circle were
mistracked. (b) is the RG-HR results.

In Fig. 3.4 a grid of points was placed inside the tongue and tracked through the

sequence, and their trajectories are shown. Some points were mistracked (Fig. 3.4(a))

when using the traditional HARP tracking, but correctly tracked using RG-HR (Fig.

3.4(b)).

Fig. 3.5 illustrates how our refinement method improves the Lagrangian strain

calculation. The Lagrangian strain is computed as the length change of line segments

with respect to the length at first time frame. It has a positive value when stretching

and a negative value when contracting. Five line segments were manually placed in the

tongue and they represented the fan-shaped genioglossus muscle. In Fig. 3.5(b), the

number 1 and number 4 line segments were mistracked in traditional HARP tracking,

which made the Lagrangian strain calculation wrong (Fig. 3.5(d)). However, they

were correctly tracked using RG-HR (Fig. 3.5(c) and (e)).
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(a) (b) (c)

(d) (e)

Figure 3.5: The action of genioglossus (GG). (a) shows five segments of GG at the
first time frame. They are then tracked using both traditional HARP method and
RG-HR throughout all the time frames, The tracked position at the last time frame
is shown in (b) and (c) respectively. (d) and (e) show the Lagrangian strains of the 5
line segments change with time. (d) is the result of traditional HARP method, and
(e) is the result of RG-RG.

3.6 Discussion

Although RG-HR is applied to directly compute motion, the region growing re-

finement process can also be thought of as an application-specific harmonic phase

unwrapping process. With this interpretation, it is clear that the flood-fill algorithm
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used to unwrap DENSE phase images (cf. [76]), reported in Spottiswoode et al. [77],

is another example of a refinement algorithm for improved motion estimation. In

both the RG-HR refinement method and the flood-fill algorithm for DENSE phase

unwrapping, tissue points are tracked or phase unwrapped in an order that is based

solely on the local smoothness of the phase images. Because of image noise and the

existence of other tissues near to that of primary interest (e.g., the heart or tongue),

the spatial paths from the seed to any given points of interest can be quite erratic,

and incorrect tracking may result.

RG-HR generally works very well on tongue images, but less reiably in cardiac

motion tracking experiments. This is mainly because of the different structures of

the tongue and the heart. It is possible, for example, for a point within the free wall

of the LV to be assigned a displacement based on a seed in the septum and a path

that travels through the liver or the blood pool for some distance rather than entirely

through the myocardium. This is illustrated in Fig. 3.6 using a simulated example.

The example shows a ring-shaped object of interest on the left and a second object

that touches the object of interest. It is assumed the object only moves in the top-

bottom direction. The points on the object are tracked from Frame 1 (Fig 3.6(a))

to Frame 2 (Fig. 3.6). The touching parts of the two objects change from Frame 1

to Frame 2 so that the second object contains different numbers of tags at the two

frames because the two objects do not move at the same pace. I.e., the two paths

connecting points A and B in Figs. 3.6(a) and (b) pass through different numbers of
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A

B

Seed

A

B

(a) Frame 1 (b) Frame 2 (c) Displacement field

Figure 3.6: An simulated example that demonstrates erratic tracking path in RG-HR.
In (a) and (b), the two curves are two different paths connecting points A and B. The
unit of displacement field is pixel. (c) shows the displacement field computed using
RG-HR.

tags at Frame 2, and same numbers of tags at Frame 1. We then apply the RG-HR

method to track the motion from Frame 1 to Frame 2 with a seed whose location is

shown in Fig. 3.6, and the resulting displacement field is shown in Fig. 3.6(c). The

computed displacement field in the object of interest is not continuous and “breaks”

in the middle. This is caused by the incorrect tracking order of the region growing

process. For example, point P in Fig. 3.6(c) is located in the object of interest and is

close to the seed point. Therefore it should be tracked early. However in the RG-HR

method it is not tracked until all points on the long path passing through the second

object are tracked, which is not correct.

Since the phase unwrapping strategy using the DENSE imaging framework em-

ployed a very similar strategy for motion and strain estimation as RG-HR, it will

likely suffer from the same problem of erratic tracking path.

The performances of RG-HR can be improved by enforcing a tissue mask in the
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algorithm. The mask can be manually determined and contains only the regions of

interested tissue. By limiting the region growing process inside the mask, both meth-

ods will produce better results because the chance that the region growing “leaks”

into the non-tissue regions is greatly reduced.

3.7 Summary

In this chapter we presented a HARP tracking refinement method based on seeded

region growing. HARP tracking suffers from mistracking when there is large mo-

tion, low temporal resolution, through-plane motion, or the points are close to tissue

boundary. The proposed method prevents mistracking through a region growing pro-

cess so that the tissue points with reliable harmonic phase values are tracked first.

Experimental results showed that this method can reliably track every point in- side

the tissue even in the case of large motion when the traditional HARP tracking fails.

This method is also computationally fast and makes it feasible to compute Lagrangian

strain between arbitrary points in real time.
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Chapter 4

Shortest Path HARP Refinement

4.1 Introduction

The region growing HARP refinement described in Chapter 3 addresses the mis-

tracking problem of HARP tracking using a region growing process, with a tracking

order determined by the local smoothness of the HARP phase images. It generally

works very well in tongue motion tracking but not in cardiac motion tracking. This is

because the motion estimate computed at any given point may depend on the specific

path over which the motion or phase values are estimated from the seed to the given

point, and region growing according to local HARP phase smoothness is not enough

to promise an optimal path especially in the cardiac tracking.

We posit that the overall region growing strategy is quite good—it covers the entire

field of view and is computationally fast. Better results should be produced if an



optimal path from the seed to each point can be found. Paths that are unnecessarily

long or go through multiple tissues should be avoided. So, rather than making local

decisions on how the region should be grown relative to the region’s current boundary,

the entire path from the seed to each point should be determined optimally. In

this way, the path’s entire length goes through points that are correctly tracked

with high reliability. Based on this concept, we develop another HARP refinement

method by formulating the problem as a single source shortest path problem; we call

this the shortest path HARP refinement (SP-HR) method. Experiments on cardiac

motion tracking have showed that this method is more robust in preventing HARP

mistracking, and is computationally as fast as the RG-HR method.

By defining synthetic phase images at the reference time and applying refinement

methods between each time frame and the reference time, it also becomes possible

to automatically track points that may appear and disappear due to through plane

motion, providing an extra level of relief from manual intervention.

This chapter is organized as follows. Section 4.2 describes the shortest path HARP

refinement method in details. Section 4.3 explains the two-step tracking procedure

using reference time frame that helps track points between any two time frames con-

veniently and reduce the occurrence of mistracking caused by through-plane motion.

Section 4.4 introduces a semi-automatic way of seed selection. Section 4.5 describes

experiment results on both numerical simulations and cardiac motion tracking. Sec-

tion 4.6 provides a discussion on the results, and Section 4.7 summarizes the chapter.
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Figure 4.1: A graph representation of shortest path HARP refinement procedure (a)
before and (b) after some particular iteration. Red oval: seed vertex. Yellow ovals:
tracked vertices. Green ovals: boundary vertices. White ovals: unvisited vertices.

4.2 The SP-HR Method

In SP-HR, the image is represented as an undirected graph G = (V, E), where V

is the set of vertices (pixels), and E is the set of edges (that connect pixels), as shown

in Fig. 4.1(a). Consider tracking points within an image at time t1 to another time

frame t2. Each point (pixel) x(t1) in the image at time t1 is represented as a vertex v

in the graph and each edge eij = 〈vi, vj〉 in E corresponds to a neighboring vertex pair

vi and vj . Each edge has an edge cost CE(eij), which is non-negative and measures

the dissimilarity between the two end vertices. As well, each vertex is associated with

a vertex cost CV (v). Both types of costs are defined below. With this framework,

the HARP tracking refinement problem can be formulated as a single source shortest

path problem, which lends itself to an optimal solution that can be computed very

efficiently.
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4.2.1 Cost Functions

We define the edge cost using both the harmonic magnitudes and the implied mo-

tions at the two end vertices. Let xi(t1) and xj(t1) be the adjacent points associated

with the two end vertices at time t1, and at time t2 they move to xi(t2) and xj(t2),

respectively. The first part of the edge cost is from the phase similarity function (cf.

Eqn. (3.3))

∆(xi,xj) = C(x(t1)) =

2
∑

k=1

|W (φk(xj(t1), t1) − φk(x
′
j(t2), t2))| . (4.1)

It depends on the smoothness of harmonic phases, and should take small value when

the edge lies in regions with smooth HARP values.

Pixels that fall outside of tissue—e.g., air or bone—have very weak MR signals

and therefore possess unreliable harmonic phases. We use the harmonic magnitude

images to determine whether adjacent points are likely to be within tissue or not.

Let D1(x, t) and D2(x, t) be the two harmonic magnitude images computed from the

two tagged images with orthogonal tags, respectively. The weighting functions are

defined as

w1(xi,xj) = (D̄(xi(t1), t1) + D̄(xj(t1), t1))/2 , and (4.2)

w2(xi,xj) = (D̄(xi(t2), t2) + D̄(x′
j(t2), t2))/2 , (4.3)

where D̄(x, t) = D1(x, t) + D2(x, t) is normalized to the interval [0, 1].

When ∆(xi,xj) is small and both w1(xi,xj) and w2(xi,xj) are large, then the

edge cost should be small. Accordingly, we define the edge cost function associated
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with the two neighboring points xi and xj as

CE(eij) =
∆(xi,xj)

w1(xi,xj)w2(xi,xj)
. (4.4)

The edge cost function penalizes both a lack of harmonic phase smoothness and edges

that cross between tissue and background.

Given a seed vertex v0, we define the vertex cost function CV (vi) at any other

vertex vi as the accumulated edge cost along the shortest path from v0 to vi. For any

path p = 〈v0, v1, v2, ..., vi〉 in G from v0 to vi, its accumulated edge cost is C(p) =

∑i
k=1 CE(〈vk−1, vk〉). Therefore the vertex cost function at vi is

CV (vi) = min{C(p) : p is any path from v0 to vi} , (4.5)

where CV (v0) is set to zero. The vertex cost function serves to establish the best path

starting from the seed by which to define the initial estimated displacement at any

pixel within the image. The actual estimated displacement at any pixel is found by

iterating (2.15) as in standard HARP tracking but starting from the initial estimate

determined by the best path.

This can be explained using Fig. 4.1(a) as an example. In this example v33 is the

seed. Two of the paths that connect vertex v22 to v33 are: p1 : v33 → v32 → v22 and

p2 : v33 → v23 → v22. The costs of the two paths are: C(p1) = 1.2 + 0.7 = 1.9 and

C(p2) = 3.0 + 1.3 = 4.3, respectively. p1 is shorter than p2 because C(p1) < C(p2).

In fact C(p1) is less than the cost along any other path that connects v33 to v22.

Therefore p1 is the shortest path and thus CC(v22) = 1.9.

57



4.2.2 Motion Tracking via Shortest Path Following

In SP-HR, the shortest path from the single manually specified seed point to

every other point is found using Dijkstra’s algorithm [78]. The overall algorithm is

still a region growing algorithm in the sense that boundary pixels are successively

added to the growing list of points comprising a region. But in addition to keeping

track of the region itself, for points on the region boundary the vertex costs and

the nearest neighbors (toward the seed)—we call them the predecessors—along the

shortest paths are also computed and stored. When a point is tracked, the traditional

HARP tracking is initialized using the displacement of the point’s predecessor on the

shortest path.

To carry out Dijkstra’s algorithm, the vertices are classified into three disjoint

sets: the boundary vertex set Vb, the tracked vertex set Vt, and the unvisited ver-

tex set Vu. The boundary vertices are maintained in a linked list structure that is

sequentially sorted based on their vertex costs—i.e., the first vertex in the list has

the smallest vertex cost. We denote N(v) to be the predecessor of v on its shortest

path, and u(v) = x(t2)− x(t1) to be the displacement of the point x associated with

v. Given these notations, the SP-HR tracking refinement algorithm is summarized in

Algorithm 4.1.

A numerical example is given in Fig. 4.1(a) and 4.1(b). Fig. 4.1(a) shows that

at some iteration, four vertices (v22, v32, v43, and v34) besides the seed have been

tracked and are marked in yellow. Among the boundary vertices (marked in green),
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Algorithm 4.1 Shortest Path HARP Refinement (SP-HR)

1: Pick a seed vertex v0. Set N(v0) = v0, and u(v0) = 0.

2: Initialize Vt = ∅, Vb = {v0}, and Vu = V \{v0}.

3: Set CV (v0) = 0, and CV (v) = ∞, for ∀v ∈ Vu.

4: repeat

5: Remove the first vertex vk in Vb. Set Vt = Vt ∪ {vk}.

6: Track the point xk associated with vk using the traditional HARP method, but

starting from the initialization of x′
k = xk(t1) + u(N(vk)) instead of xk(t1).

7: for all vi such that 〈vk, vi〉 ∈ E and vi /∈ Vt do

8: Compute the new cost C ′
V (vi) = CV (vk) + CE(eki).

9: if C ′
V (vi) < CV (vi) then

10: Set CV (vi) = C ′
V (vi), and N(vi) = vk.

11: if vi ∈ Vb then

12: Set Vb = Vb\{vi}, and re-insert vi into the sorted list Vb based on CV (vi).

13: else if vi ∈ Vu then

14: Set Vu = Vu\{vi}, and insert vi into Vb based on CV (vi).

15: end if

16: end if

17: end for

18: until Vb = ∅
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v24 has the lowest cost (1.6+0.5 = 2.1) via path 〈v33, v34, v24〉. Therefore it is tracked,

and the edge costs on 〈v24, v23〉 and 〈v24, v14〉 are computed. The vertex costs of v14

and v23 are updated accordingly, and v23 becomes the predecessor of both vertices.

In addition, v14 is changed to a boundary vertex. The edge and vertex costs of the

graph at the end of this iteration is shown in Fig. 4.1(b).

4.2.3 Advantages of SP-HR over RG-HR

The RG-HR method uses an edge criterion alone to decide what point to track

next. The inherent problem with this approach is that determination of what point

to track next depends on what points are currently on the boundary, and these

points are (potentially) far from the seed and have no tight relationships with the

seed. This permits potentially unnatural effective paths to determine how points

in the image are tracked. In contrast, the SP-HR algorithm ties the tracking of

every point throughout the image directly to the seed point through its own optimal

path determined by motion smoothness and reluctance to cross boundaries. Since

the seed’s displacement is certified by the user to be correctly tracked, it is far less

likely that gross tracking errors will occur within the region of interest defined by the

seed—e.g., the myocardium or the tongue. This approach also permits us to correctly

track points that are very near to a tissue boundary, because these points will almost

always be tied back to the seed through the region of interest defined by the seed.

60



4.3 Two-Step Tracking Using Reference

Time Frame

There is an additional benefit to the SP-HR approach (as well as the RG-HR

approach). Suppose that the seed is certified by the user to have undergone a very

large displacement. In this case, all neighbors of the seed will be initialized with

this displacement in order to find displacements. This overall large displacement can

then propagate to all corners of the image, permitting HARP to track very large

displacements. Because of this capability, we can then track directly between any

pair of images in the image sequence (provided that there is a seed that is correctly

tracked throughout the entire sequence). This frees us from the previous modes of

operation which were limited to sequentially tracking either forward or backward in

time.

Through-plane motion can cause tissues to appear and disappear in an image

sequence (cf. [74]). Because of this, it is sometimes problematic to try to track a given

point all the way through the sequence. When tracking fails due to disappearing

tissue, it is difficult to find a correct correspondence when it appears again later.

The authors of [74] addressed this problem by defining active and inactive points

corresponding to those that appear and disappear. Here we solve this problem in a

much simpler way by using synthetic harmonic images at a reference time and the

large-displacement, two-frame tracking procedure mentioned above. We describe this
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overall approach now.

4.3.1 Reference Time Frame

The reference time t0 is defined as the time immediately after tissue tagging is

applied and the tissue has not deformed. Because it takes some time in order to

acquire the first image, we can never actually obtain an image of the anatomy at the

reference frame. However, we know from the tagging parameters what the gradients

of harmonic phase should be at the reference time—and we know this throughout the

entire image, not just within the tissue. In particular, given the two normal vectors

of the tag planes e1 and e2, synthetic HARP images can be defined as follows

θ1(x, t0) = W (k1x · e1 + θ1
0) ,

θ2(x, t0) = W (k2x · e2 + θ2
0) ,

(4.6)

where k1 and k2 are the (known) tagging frequencies in the n1 and n2 directions,

respectively, and θ1
0 and θ2

0 are unknown phase offsets. The authors of [74] describe

an approach to accurately estimate the unknown phases θ1
0 and θ2

0. In our approach

this is not necessary since we simply use this image as a reference frame—not a

representation of the true configuration—so we set θ1
0 = θ2

0 = 0. With this image in

hand, tracking from the seed in the first time frame to this reference time frame is

carried out, so that the seed now has a position in the reference frame.
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4.3.2 Two-Step Tracking

Tracking between any two time frames tj and ti is now performed in two steps.

First HARP refinement is applied to track directly from time frame tj to the reference

time t0. Since the phase value is available everywhere in the reference time, all

tissue points at tj can be tracked back to the reference time. In the second step,

HARP refinement is applied to track directly from t0 to time frame ti. In this step,

tissue points can be tracked correctly to ti as long as they have not moved out of

the image plane due to through-plane motion. We note that direct tracking quite

deliberately means that no intervening time frames are used to establish a smaller

motion estimates between each frame. Instead, we rely on knowledge of the motion

of the seed throughout all time frames and the spatial continuity and shortest path

algorithm to track potentially very large motions between these time frames.

We see that this two-step procedure does not depend on any particular tracking

result except between the reference frame and either frame at times ti or tj. Therefore,

if a tissue point disappears and then reappears due to through plane motion, it can

still be successfully tracked between ti and tj as long as it appears in both of these

images. We also see that the two-step procedure (with HARP refinement at its core)

makes it possible to directly track between any two time frames, which is generally

not possible in the conventional HARP tracking. This changes how one goes about

tracking all the points in an image sequence, as we see next.
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4.3.3 Tracking Through an Image Sequence

So far we have described a process that tracks between pairs of images. When

the goal is to track all points in an entire image sequence, three approaches seem

reasonable given the general framework we have proposed. First, it might seem that

the most general approach would be to stack up all the images as a three-dimensional

image and apply the fundamental region-growing strategy to the entire stack. It

turns out that this approach is problematic because it is difficult to properly scale

the changes in phase and magnitude that one might expect between pixels in the

spatial dimensions and pixels in the temporal dimension. We experimented with this

technique but soon abandoned the approach entirely.

The second approach to tracking an entire image sequence is to simply track each

image pair sequentially through time after having established the validity of the seed’s

trajectory through all time. This approach has the disadvantage that tissues might

appear and disappear throughout the image sequence causing very erroneous tracks

to appear. But it has the advantage that every image has a pixel-specific displacement

field associated with it. Tracks for any point that might be picked anywhere on the

image, including between voxel centers, can be computed using interpolation of this

time-varying spatial vector field.

The third approach is to use the reference frame tracking approach described

above. In this case, we track the image at every time frame directly to the reference

time frame, and also track the reference image directly to every time frame. With
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these computed motion fields, the motion between any two time frames can be readily

achieved using the two-step procedure. For example, by computing the motion from

the first time frame to all the later time frames, this approach provides a direct

Lagrangian track for each point (pixel) in the first time frame—i.e., this result tells

us precisely where these first pixels are at every time frame. It will generate erroneous

tracks when the tissue disappears but will pick up the correct positions when the tissue

reappears. This approach is ideal for determination of Lagrangian strain over time.

With the motion field from every time frame to the reference time frame in hand, this

approach also makes it straightforward to compute the Eulerian strain at any time

frame.

4.4 Semi-Automatic Seed Selection

The seed point should lie within the tissue of interest and must be correctly tracked

by conventional HARP tracking through all time frames. For most applications—e.g.,

scientific and clinical—it is essential that the seed’s trajectory be manually checked

before applying HARP refinement. Trial-and-error is a straightforward approach to

finding a suitable seed. In this strategy, the user manually clicks on a point in one

image, the point is tracked forward and backward in time using traditional HARP

tracking, and then the user verifies the appropriateness of the trajectory by observing

the path through all time frames. A slightly more efficient approach to finding a seed
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is to have the computer suggest a putative seed and then the user needs only verify

its appropriateness. We describe an approach in this section that has proven to be

100% reliable in our tests to date.

The approach begins with the user outlining a region of interest, a step that is

nearly always carried out in motion analysis anyway. In the heart, the region of

interest is usually the LV myocardium; in the tongue, it is the body of the tongue

muscle. A list of candidate seeds pi(t1), i = 1, 2, ...N within the region of interest is

then automatically produced. In the heart, the candidate seeds are equally spaced

pixels on the mid-ventricular contour (which is found using morphological thinning of

the ventricular wall). In the tongue, the candidate seeds comprise pixels on a coarse

rectangular grid.

All candidate seeds are tracked forward to all later times tk, k = 2, 3, ...n using

traditional HARP tracking. Let the location of the ith candidate seed at time tk

be pi(tk). The points pi(tn) are again tracked backward to the first time frame,

yielding the points p′(tk), k = n− 1, n− 2, ..., 1. Points that can be correctly tracked

with traditional HARP method must satisfy the forward-backward tracking identity

pi(t1) = p′
i(t1). Therefore, all tracked seeds that violate this condition are removed

from the candidate seed list.

In order to choose the best point from the remaining seeds, we look at the magni-

tudes of their second derivatives over time. We note that mistracked points typically

involve a sudden displacement at some point in the trajectory, which corresponds
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(a) (b)

Figure 4.2: Comparison of correctly tracked and mistracked points in traditional
HARP method. (a) The y components of the 2D displacements of a mistracked and a
correctly tracked points among 12 time frames, and (b) the L1-norm of their second
derivatives.

to a sudden large acceleration—i.e., second derivative. Therefore, mistracked points

tend to have large second derivatives at some point in their trajectory while correctly

tracked points tend to have smaller second derivatives throughout, as illustrated in

Fig. 4.2. Following this observation, we pick the seed from the remaining candidate

points as the one that has the minimum maximum second derivative over all time, as

follows

pseed = arg min
pi

(

max
t

(
∥

∥

∥

∥

d2pi(t)

dt2

∥

∥

∥

∥

))

. (4.7)

Numerical finite differences are used to approximate this derivative.
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4.5 Experiment Results

4.5.1 Numerical Simulation

We first demonstrate the effectiveness of the SP-HR method using a simulated im-

age sequence. In this simulation, the tissue is moving only in the left-right direction,

so only one tag orientation is used. Three time frames were simulated, as shown in

Figs. 4.3(a)–(c). Both SP-HR and traditional HARP tracking were applied and com-

pared. In SP-HR, the two-step procedure was applied, while in the traditional HARP

tracking, the points were tracked sequentially in time. The computed displacement

fields from the first to the second time frames are shown in Figs. 4.3(d)–(f). We

observe very large tracking errors in the traditional HARP result [Fig. 4.3(e)] on the

left side of the “tissue,” which are not present in the SP-HR result [Fig. 4.3(f)].

This example also serves to illustrate the three classes of mistracking that occur

in traditional HARP. The three rectangular regions 1, 2, and 3 depicted in Fig. 4.3(a)

are expanded and shown in Figs. 4.4(a), (b), and (c) on the left. The circles shown

in Time Frame 1 were tracked to the second and third frames using the two methods

and the results are shown in the second and third columns. In Region 1 the point

was mistracked in traditional HARP because of a large motion between the frames,

but it was correctly tracked using SP-HR. In Region 2 the point moves out of the

plane in the second time frame and re-appears in the last frame due to through-plane

motion. It was mistracked by both methods in the second time frame because the
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1

2

3

(a) Time Frame 1 (b) Time Frame 2 (c) Time Frame 3

(d) Truth (e) Traditional HARP (f) SP-HR

Figure 4.3: Tracking results for simulated data, horizontal motion only. Three simu-
lated images at time frames (a) t = 1, (b) t = 2, and (c) t = 3. Displacement fields
(horizontal only, in units of pixels) from the first to the second time frames: (d) the
true field, (e) that computed using traditional HARP tracking, and (f) that computed
using SP-HR.

corresponding point does not exist. It remained mistracked by traditional HARP in

Time Frame 3, but was correctly tracked by SP-HR because of its use of the reference

frame. In Region 3, the tracked point is very close to the boundary. In this case,

traditional HARP failed in the second time frame but recovered in the third, while

SP-HR worked in all cases.
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Time Frame 1 Time Frame 2 Time Frame 3

(a) Region 1

(b) Region 2

(c) Region 3

Figure 4.4: Examples of the three kinds of mistracking in traditional HARP, depicted
in (a) Region 1, (b) Region 2, and (c) Region 3. The circles in Time Frame 1 are
tracked into Time Frames 2 and 3 using traditional HARP (“x” symbols) and SP-HR
(“+” symbols).

4.5.2 Cardiac Motion Tracking

We applied SP-HR to track the motion of the LV of the human heart. Experiments

were carried out on 13 short axis cine tagged image sequences acquired over time from

four different normal human subjects covering different parts of the heart. All human
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subjects data were obtained with informed consent under an approved IRB protocol.

In each case the tag period was 12 mm and the slice thickness was 8 mm. The

numbers of time frames varied from 15 to 25, and the temporal resolutions varied

from 20 ms to 43 ms. The image sizes were all 256× 256, with FOVs either 300 mm

or 320 mm.

To quantitatively evaluate our refinement method, we asked 20 volunteers to de-

lineate the LVs from all the image sequences. We picked one time frame from each

of the 13 image sequences. After some training (on other images), each volunteer

manually drew the epicardial and endocardial contours of the LVs together with two

insertion points of the RV on each of the 13 selected images. For each delineation,

the myocardium region was automatically divided into epi-, mid-, and endo-cardial

regions. The septal wall was then automatically divided into two pie-shaped sectors

and the free wall was automatically divided into four sectors. An example of the

resulting delineation is shown in Fig. 4.5.

4.5.2.1 Comparison of SP-HR and Traditional HARP

We first compared the performance of SP-HR with traditional HARP tracking

in the 18 parts of the LV. The displacement fields from the first time frame to the

last time frame in all image sequences were computed using both methods. In SP-

HR, the seeds were automatically determined as described in Section 4.4. For all

260 delineations, we computed the average ratios of correctly tracked points to the
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Figure 4.5: Illustration of the 18 sectors of the LV. The two small circles mark the
insertion points between the left and right ventricles.

total points in each of the 18 parts. The results are shown in Fig. 4.6. It is observed

that refinement worked better in all 18 regions although both methods worked almost

perfectly in the midwall regions. Traditional HARP tracking generally performs worse

in the endocardium than in the epicardium, while the SP-HR works almost equally

well in all regions. Regarding sectors, traditional HARP tracking performs most

poorly in sectors 3 and 4 on the free wall. This is because the free wall has larger

motion both in the in-plane directions as well as in the through-plane direction.

To evaluate the effectiveness of our method when there is large motion and low

temporal resolution, we used subsets of the image sequences obtained by dropping

intermediate images. In particular, for a time step n, the points were tracked in the
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1 2 3 4 5 6 

Epicardium, SP-HR 0.9701 0.991 0.9855 0.9957 0.9901 0.9919 

Epicardium, HARP 0.8861 0.9503 0.9664 0.9849 0.9647 0.957 

Midcardium, SP-HR 0.9975 0.9991 0.9923 0.9924 0.998 0.9996 

Midcardium, HARP 0.9916 0.9987 0.9752 0.9684 0.9839 0.9981 

Endocardium, SP-HR 0.9787 0.9772 0.8806 0.9572 0.9623 0.991 

Endocardium, HARP 0.8817 0.9315 0.7086 0.7782 0.8213 0.9505 

60% 

70% 

80% 

90% 

100% 

Figure 4.6: The average ratios of correctly tracked points to total points in all epi-,
mid-, and endo-cardial regions over the six sectors, for both SP-HR and traditional
HARP tracking. Variances are represented by black lines. The numbers 1–6 represent
sector number.

image series at time frames 1, n+1, 2n+1, ... only. The images at the last time frames

were always included so the final computed displacements could be directly compared

(which means that the final time step might be less than n). By using time step other

than n = 1, we mimic the situation of large motion and/or poor temporal resolution.

In our experiments we computed the displacement fields from the first time frame

to the last time frame using both SP-HR method and traditional HARP tracking

with time steps 1, 2, and 3 on all 13 image sequences. For each image sequence,

we determined the LV myocardium region by averaging all 20 rater’s epicardial and

endocardial contours, and including all pixels within these average boundaries. From

the tracking results, we computed the ratio of correctly tracked points inside the LV

myocardium. It is important to keep in mind that time steps are irrelevant in SP-HR
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(a) (b) (c) (d)

Figure 4.7: Examples of the magnitude of displacement field computed using (a) SP-
HR and traditional HARP tracking with time steps (b) 1, (c) 2, and (d) 3 respectively.

because the two-step approach is used. We note that the seed point tracked correctly

using traditional HARP in all cases including the subsampled sequences.

Fig. 4.7 shows the magnitude of the motion field on one of the 13 test image

sequences computed using SP-HR and traditional HARP with time steps 1, 2, and 3.

Figs. 4.8 (a)–c) compare the correctly tracked regions on the same image sequence.

We observe that with a time step greater than 1 traditional HARP mistracks a large

portion of the LV region and performs much worse than SP-HR; for a time step equal

to 1, traditional HARP performs slightly worse than SP-HR. Fig. 4.8(d) illustrates

the ratios of correctly tracked points in the LV myocardium of 13 image sequences

when using SP-HR and traditional HARP tracking with time steps 1, 2, and 3. It

can be seen from Fig. 4.8(d) that SP-HR worked better than traditional HARP in

all image sequences. On average, 98.4% points were correctly tracked using SP-HR,

93.1% in traditional HARP tracking with time step 1, 79.3% with time step 2, and

58.7% with time step 3.
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(a) Time step 1 (b) Time step 2 (c) Time step 3

(d)

20% 

40% 

60% 

80% 

100% 

1 2 3 4 5 6 7 8 9 10 11 12 13 

SP-HR HARP, time step 1 HARP, time step 2 HARP, time step 3 

Figure 4.8: Comparison of SP-HR and traditional HARP with different time steps.
Correctly tracked regions on one data set using SP-HR and traditional HARP with
time steps (a) 1, (b) 2, and (c) 3. Blue: correctly tracked regions using traditional
HARP with different time steps; yellow+blue: correctly tracked regions using SP-
HR; Red: average LV myocardium boundaries. (d) shows the percentage of correctly
tracked points on the 13 test image sequences, which is shown from left to right.

4.5.2.2 Comparison of SP-HR and RG-HR

The same seed points were picked in both methods. For each image sequence, the

displacement field from the time at which the contours and regions were determined to

all other times was computed using both methods. In total each method was applied

208 times. Tracking was considered to be successful if the computed motion field
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inside LV has no visible abrupt jump. The success rate of RG-HR was 93.8%, while

SP-HR was 99.5%. Fig. 4.9 shows an example in which RG-HR fails while SP-HR

succeeds. Figs. 4.9(a) and (b) show the magnitude of the displacement field inside the

LV using RG-HR and SP-HR methods, respectively. We observe that RG-HR result

contains abrupt jumps of displacement inside the myocardium region, which indicates

errors in tracking. In contrast, the SP-HR method result is smooth throughout the

whole tissue.

Fig. 4.9(c) shows the intermediate results of the two methods on the same example

in Figs. 4.9(a) and (b). The evolution of the tracked regions is depicted as iteration

increases from left to right. It is observed that in RG-HR, the liver—at the lower part

of the image—is tracked before the LV is completely tracked while in SP-HR, points

in the liver are tracked only after nearly all LV points are tracked. Because of the

globally defined vertex cost function in SP-HR, the tracked region grows inside the

LV with a similar speed on all sides of the seed, which is not true in RG-HR. Thus,

points inside the LV are reached via an optimal path in SP-HR and are more likely

to be correctly tracked.

4.5.2.3 Tracking with Two-Step Procedure

The effect of introducing the reference time frame and two-step procedure in

SP-HR is shown in Fig. 4.10. In this experiment, we computed the displacement

fields from the first to the last time frame using SP-HR in two ways: 1) by tracking
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(a) RG-HR (b) SP-HR

(c) Tracking Order

Figure 4.9: The magnitude of the resulting displacement field inside the LV using (a)
RG-HR and (b) SP-HR methods. (c) The tracking order of the (top row) RG-HR
and (bottom row) SP-HR methods shown from left to right. The red dots mark the
seed point.

through successive time frames and 2) by also using the two-step procedure with

synthetic phase images in reference frame. It can be seen from Figs. 4.10(a) and (b)

that both procedures get the same results almost everywhere inside the myocardial

region. However, the two-step strategy works much better for points close to the
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tissue boundary. The displacement of one point over time is shown in Fig. 4.10(c)

as an example. Due to through-plane motion, this point moved out of the imaged

plane from the 5th to the 10th time frames and moved back afterwards. When

tracked successively, it was mistracked from the 5th time frame until the last time

frame (green dashed lines). By using the two-step procedure, this point was correctly

tracked after the 11th time frame (blue lines). For comparison, the displacement

of one of its neighbors that was correctly tracked in both procedures is also shown

(dotted lines).

4.5.3 Computation Time

The SP-HR works as fast as the RG-HR method because the computation re-

quired for the shortest path calculation is negligible in comparison to the remaining

computations. I.e., it takes less than 0.2 second to track an entire 128 by 128 image

for one time frame in our implementation.

4.6 Discussion

The contribution of HARP refinement methods (both SP-HR and RG-HR) is

to correct the mistracking in traditional HARP tracking and to extend the regions

that can be tracked correctly. For points that are correctly tracked in both HARP

refinement and traditional HARP tracking, the computed motion is the same. This
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(a) Sequentially Tracking (b) Two-step Procedure

(c) (d)

Figure 4.10: Effectiveness of the two-step approach in SP-HR tracking. Magnitude of
displacement in the myocardium achieved (a) by SP-HR tracking successively from
the first to last time frames and (b) by tracking first from the first time frame to the
reference time frame and then from the reference time frame to the last time frame.
The colormap is the same as in Fig. 4.9. The computed (c) x and (d) y displacement
components between the first and last image frame for a point near the LV boundary
and a (more interior) neighboring point.
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is because they all rely on the same harmonic phase images and are based on the

phase invariance property. This is to say, the tracking accuracy in HARP refinement

methods is the same as traditional HARP, i.e., about 0.1–0.3 mm [40]. As well,

with the displacement fields computed using refinement methods, the other useful

quantities for functional analysis—velocity fields, strain rates, Eulerian strain, and so

on—can be computed in the same way as with traditional HARP [40–42].

The two-step procedure provides a way to reduce the error caused by through-

plane motion when computing point trajectories. If only the displacements from one

particular time frame to all other times are of interest, the introduction of a reference

time frame is not necessary. The refinement method can be directly applied between

that particular time frame and all other times one by one after the seed trajectory

is computed. However, we typically want to compute the displacement of a point

between any two time frames, backward or forward. The introduction of reference

time frame can both reduce the computation time and reduce gross tracking errors

in this task.

The computed dense displacement fields from every time frame to the reference

time provides the possibility of directly computing the Eulerian strain from the dis-

placement field. In conventional HARP practice, the Eulerian strain is computed

directly from the slope of the phase images [41, 42]. Now, the availability of our fast

HARP refinement method provides an alternative way of Eulerian strain calculation,

and this procedure may provide more insights into it. For example it has been known
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that the strain computation is susceptible to noise and HARP artifacts, especially the

radial strain, and it is often necessary to smooth the strain map. Previously, strain

smoothing is performed by smoothing the spatial derivative of the harmonic phase

images [79–81], because smoothing directly the phase images is difficult due to phase

wrapping. With SP-HR, it is now possible to directly smooth the displacement field

and a smoothed Eulerian strain map can be subsequently computed.

We applied our refinement methods (both RG-HR and SP-HR) only on the har-

monic phase images computed using HARP method. Our methods should work with

the phases images computed with other methods too, e.g., Gabor filter banks [61].

In addition, as mentioned in Chapter 3, the refinement process can be thought of

as an application-specific harmonic phase unwrapping process. Therefore though not

demonstrated here, both refinement methods should be applicable to DENSE motion

tracking as well with very little modification (see [76, 77]).

4.7 Summary

In this chapter, we presented a new refinement method for HARP tracking by

formulating a single source shortest path problem and solving it using Dijkstra’s

algorithm. We also developed a two-step procedure by introducing a reference time

frame to help conveniently track points between any two time frames even when large

displacements exist. Experimental results showed that this method can reliably track
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every point inside the tissue even when there is large motion, low temporal resolution,

through-plane motion, or the points are close to tissue boundary. This method is also

computationally fast and makes it feasible to reliably compute other useful quantities

in functional analysis of motion, for example 2D strain.
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Chapter 5

Measuring 3D Tongue Motion

During Speech Using zHARP

5.1 Introduction

In order to measure 3D tongue motion, existing methods all required the acqui-

sition of multiple images in orthogonal imaging planes, which is a time-consuming

imaging task and is prone to misregistration errors due to patient motion. This data

must then be interpolated within the field of view using (for example) spline mod-

els [71, 72] on the whole tongue. It is desirable to image motion and strain in the

tongue more directly so that the artifacts caused by patient motion and imperfect

speech repetitions can be reduced and that off-line processing is minimized.

Recently, Abd-Elmoniem et al. [69, 70] developed a new MR imaging and image
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processing method for cardiac imaging called zHARP, which can encode and track 3D

motion from a single slice without increasing acquisition time. ZHARP also enables

convenient and fast 3D strain tensor computation [70, 82]. Originally developed and

applied to cardiac imaging, the application of zHARP to the tongue is not straight-

forward because the tongue (in repetitive speech) does not move as consistently as

the heart (in its very consistent cycle). Therefore, tongue images are more susceptible

to motion artifacts than cardiac images, and these artifacts are also exaggerated in

zHARP as compared to conventional tagging (explained below).

In this work, we re-implemented the zHARP imaging sequence and optimized it

for tongue motion imaging and analysis. We also used a specialized MR triggering and

vocal repetition method to reduce motion artifacts. Experimental results on imaging

the tongue in speech demonstrated the capability of our method on 3D tongue motion

measurement and strain analysis.

This chapter is organized as follows. Section 5.2 provides background knowledge

on slice-following tagging and the zHARP method. Section 5.3 describes the method-

ology of 3D tongue motion imaging using zHARP, which includes the implementation

of zHARP on a Siemens scanner and parameter optimization, and a specialized vo-

cal repetition and MR triggering system for artifact reduction. Section 5.4 shows

results on phantom validation and in vivo tongue experiments. Section 5.5 provides

discussion and future work. Finally, Section 5.6 summarizes this chapter.
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5.2 Slice-Following and zHARP Imaging

5.2.1 Slice-Following Tagging

In contrast to standard tagging, slice-following CSPAMM (SF-CSPAMM) tech-

nique [83, 84] takes into account through-plane motion when imaging moving tissue.

In standard SPAMM/CSPAMM tagging, tags are applied on the whole tissue at the

initial time frame, and a thin image slice is acquired at later time frames. The loca-

tion of the image slice is fixed relative to the scanner. Due to through-plane motion,

the tissue that is imaged in earlier time frames may move out of the image plane so

that the imaged material points at different time frames may not be the same. Thus

the motion computed from SPAMM/CSPAMM images is just the apparent motion.

The principle of SF-CSPAMM is illustrated in Fig. 5.1, and Fig. 5.2 shows the

pulse sequence of SF-CSPAMM. In SF-CSPAMM, only a thin slice is tagged at the

initial time frame, but a thick slab is imaged later. The slab is thick enough so that

the moving tagged slice is always encompassed by the slab at later time frames.

As in conventional CSPAMM, SF-CSPAMM acquires two image sequences, one

with a [+90o, +90o] tagging pulse pair, and the other with a [+90o,−90o] tagging

pulse pair (see Fig. 2.1 and Eqns. (2.1) and (2.1)). The two tagging RF pulse pairs

create a tagging phase shift of π between the two image sequences, while the imaged

signal in the imaged slab but outside of the tagged slice remains the same. At time
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Figure 5.1: Illustration of SF-CSPAMM. The tag is applied in a thin slice at the initial
time frame (left), and the image is acquired on a thick slab. At later time frame tn
(right), the tagged slice is deformed in 3D. The location of the material point x(tn)
at tn in the image is its projected location on the image plane.

t, the acquired images from the two image sequences can be written as:

I1(x, t) = A(x, t) + T (x, t) , (5.1)

I2(x, t) = B(x, t) + T (x, t) , (5.2)

where A(x, t) and B(x, t) are the magnetization in the tagged slice as defined in

Eqns. (2.1) and (2.2), and T (x, t) is the magnetization in the imaged slab but out of

the tagged slice. By subtracting the two images, the signal that is not in the tagged

slice (T (x, t)) is canceled. The SF-CSPAMM image can be represented as:

ISF = A(x, t) − B(x, t) = 2M0(x, t)e−t/T1 cos(ωTp(x, t)) , (5.3)

where M0(x, t) represents the transverse magnetization, ω is the tag frequency, and

p(x, t) is the 3D position of the imaged material point x = (x, y) at the initial

(reference) time frame. This is similar to the CSPAMM image (Eqn. (2.3)) except
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Figure 5.2: The pulse sequence of SF-CSPAMM.

that the imaged point p is the material point and moves in 3D in space, while in

CSPAMM the imaged points are located at fixed spatial locations. In this way the

SF-CSPAMM encodes the true in-plane motion of the material points by following

the moving slice. To compute the 2D in-plane motion, two SF-CSPAMM images with

orthogonal tag orientations—e.g., in the x and y directions–must be acquired.

5.2.2 zHARP Imaging

ZHARP [69,70] is built on SF-CSPAMM technique and it encodes both in-plane

(x and y components) and through-plane motion (z component) in one single image

slice without affecting the image acquisition speed. The zHARP imaging sequence

adds to the SF-CSPAMM tagging sequence a small z-encoding gradient immediately
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Figure 5.3: The zHARP pulse sequence.

before the readout. This gradient adds to all material points in the tagged slice a

z-position dependent phase φz, which is linearly related to the location of the point

in z direction at the time when the image is acquired. The zHARP pulse sequence is

illustrated in Fig. 5.3.

As well, the z-encoding gradients applied in the orthogonally tagged images have

the same magnitude but opposite polarity. The two acquired images can be expressed

as:

Ix
zHARP = 2M(x, t) cos(ωT

x p(x, t))ejφz(x,t)ejφe(x) , (5.4)

Iy
zHARP = 2M(x, t) cos(ωT

y p(x, t))e−jφz(x,t)ejφe(x) , (5.5)

where ωx and ωy are the tag frequencies in the two orthogonal directions and φe(x)
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is the phase error that is caused by susceptibility and magnetic field inhomogeneities.

Letting kz be the z-encoding frequency, and z(x) be the z location of the material

point x at time t, then

φz(x, t) = kzz(x, t) . (5.6)

5.2.3 zHARP Image Processing

The phase images that encode x, y, and z components of 3D motion can be

separated from the zHARP images using the 2D HARP concept [69, 70]. Example

zHARP images are shown in Figs. 5.4(a) and (b). Instead of applying the bandpass

filter on only one of the harmonic peaks, the bandpass filter is applied to both positive

and negative harmonic peaks of each of the two orthogonally tagged images Ix
zHARP

and Iy
zHARP as shown in Figs. 5.4(c) and (d). We then get four harmonic images from

filtering of the four harmonic peaks (A-D in Figs. 5.4(c) and (d)):

I−
x (x, t) = D(x, t)ej(−φx(x,t)+φz(x,t)+φe(x,t)) , (5.7)

I+
x (x, t) = D(x, t)ej(φx(x,t)+φz(x,t)+φe(x,t)) , (5.8)

I−
y (x, t) = D(x, t)ej(−φy(y,t)−φz(x,t)+φe(x,t)) , (5.9)

I+
y (x, t) = D(x, t)ej(φy(y,t)−φz(x,t)+φe(x,t)) , (5.10)

where φx and φy are the harmonic phases from the horizontal and vertical tagging,

and φz is the phase arising from the through-plane motion. The phase images can
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(a) Horizontal tag (b) Vertical tag

(c) Fourier transform of (a) (d) Fourier transform of (b)

Figure 5.4: The example tongue (a)-(b) zHARP images and (c)-(d) their Fourier
transform. The four harmonic peaks marked as A, B, C, and D are extracted by
bandpass filtering and used to compute the horizontal, vertical and z phase images.

then be computed from these four complex images:

φx =
1

2
∠(I+

x (x, t) · I−
x (x, t)) , (5.11)

φy =
1

2
∠(I+

y (x, t) · I−
y (x, t)) , (5.12)

φz =
1

4
∠(I+

x (x, t) · I−
x (x, t) · I−

y (x, t)) · I−
y (x, t)) , (5.13)

φe =
1

4
∠(I+

x (x, t) · I−
x (x, t)) · I+

y (x, t) · I−
y (x, t)) , (5.14)
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where ∠ is the function that calculates the phase of a complex number, and I is

the complex conjugate. With the phase images φx, φy, and φz, the 3D motion of the

material points can be computed. The random phase error φe is not used for the

motion tracking.

5.2.4 3D Motion Tracking

3D motion tracking from zHARP images is executed in two steps. First, the

in-plane motion is computed using conventional 2D HARP tracking and HARP re-

finement. For a material point x(t) that is tracked from time ti to ti+1, denote its

locations at the two times as xi = [xi, yi, zi] and xi+1 = [xi+1, yi+1, zi+1], and the

displacement as u = [ux, uy, uz] = xi+1 − xi. The in-plane displacement components

ux and uy are computed from the phase images φx(x, y, ti), φy(x, y, ti), φx(x, y, ti+1),

and φy(x, y, ti+1) based on the phase invariant property using HARP tracking. Hence

we can get xi+1 = xi + ux and yi+1 = yi + uy.

In the second step, the through-plane motion is computed based on the fact that

the z-phase φz is a linear function of the material point’s location in the through-plane

direction, i.e.,

φz(xi+1, yi+1, ti+1) − φz(xi, yi, ti) = kz(zi+1 − zi) . (5.15)

Since the phase image is wrapped, and assuming the material point does not move

much between neighboring time frames, the through plane motion uz can be computed
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by rewriting Eq. (5.15) as:

uz = zi+1 = zi +
1

kz

W{φz(xi+1, yi+1, ti+1) − φz(xi+1, yi, , ti)} . (5.16)

5.2.5 3D Strain Computation

The full 3D strain tensor can be measured using two parallel zHARP slices [82,85]

without explicitly computing the displacement u. Instead, the gradient of displace-

ment ∇u can be readily computed from the HARP images. From Eqs. (5.3) and

(5.6), we have

Φ(x, t) =

















φx

φy

φz

















=

















ω 0 0

0 ω 0

0 0 kz

















p(x, t) . (5.17)

Therefore, the displacement gradient F can be directly computed from the phase

images as follows:

F−1 = ∇p(x, t) =

















ω−1 0 0

0 ω−1 0

0 0 k−1
z

















∇Φ(x, t) . (5.18)

Given two parallel zHARP slices, the 3D HARP vector images Φ(1)(x, t) and Φ(2)(x, t)

are first calculated on a regular grid x = (i, j), 1 ≤ i, j ≤ N . Then the phase gradient

is calculated using finite differences as follows:

∇φk(x, t) =
1

2
[∇φ

(1)
k (x, t) + ∇φ

(2)
k (x, t)] , (5.19)
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where

∇φ
(n)
k (x, t) =

















φ
(n)
k (i + 1, j, t) − φ

(n)
k (i, j, t)

φ
(n)
k (i, j + 1, t) − φ

(n)
k (i, j, t)

φ
(2)
k (i, j, t) − φ

(1)
k (i, j, t)

















T

. (5.20)

The 3D strain tensor can be computed using Eqs. (5.18) and (2.19).

5.3 Measuring 3D Tongue Motion Using

zHARP

5.3.1 zHARP Pulse Sequence Implementation

We implemented zHARP using a gradient echo sequence on a 3T Siemens Tim-Trio

MRI scanner (Siemens Medical Solutions, Malvem, PA) equipped with twelve receiver

channels. The pulse sequence is shown in Fig. 5.3. Immediately after the trigger

signal is detected, the slice-selective tagging is applied on a thin slice, followed by a

standard gradient echo pulse train but modified by adding the z-encoding gradient

before readout.

For one image set, the same acquisition is repeated 4 times with combinations

of +/- 90o second tagging RF pulse, and phase encoding direction in x or y-axis—

i.e., the readout is in y or x-axis, respectively—with different z-encoding gradient

polarity. We also implemented a ramped flip angle technique (see [83]) to improve
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the tag persistence and achieve a constant tag contrast during acquisition.

5.3.2 Motion Artifact and Parameter Optimiza-

tion

Slice-following tagging images have lower SNR comparing to conventional tagging

because the signals from unexcited tissue in slice-selective tagging remain out of the

imaged slice through time. They are also much more sensitive to motion artifacts

than conventional tagging. ZHARP suffers the same problems because it is build

upon slice-following tagging.

Motion artifacts are caused by inconsistent repetitions. Fig. 5.5 shows example SF-

CSPAMM images in which the subject is not speaking, yet artifacts due to swallowing

are visible around the throat. These images were all acquired in 14 repetitions at

625 ms after tagging. From the images it is clear that the artifacts are more severe

for a thicker slab, although a thicker slab is often desired because it can capture more

through-plane motion. This is because slice-following tagging images are computed

by subtracting two images that are acquired on a much thicker slab than the slice

of interest. Through subtraction, the motion artifacts on the thick slab are carried

over to the remaining tagged thin slice, and they are greatly amplified because the

signal strength of the tagged slice is much weaker than the imaged slab. Thus motion

artifacts are more severe when the imaged slab is thicker.
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(a) (b) (c)

Figure 5.5: Examples of the motion artifacts on SF-CSPAMM images. These images
were acquired using same parameters except the thickness of the imaged slab is (a)
2, (b) 3, and (c) 4 times of the tagged slice.

In addition, motion artifacts are more severe in later time frames than earlier

time frames. The tissue in the thick slab but out of the tagged slice has no signal

immediately after tagging, since the magnetization is rotated onto the transverse

plane by the non-selective 90o RF pulse in the slice-selective tagging. Because of T1

recovery, the signal from untagged tissue gains over time, while the tagging signal

decays in the meantime. Therefore the artifacts are amplified much more in later

time frames.

To suppress motion artifacts, the imaged slab should be as thin as possible while

still encompassing the moving tagged slice in all time frames. In practice since the

tongue moves least in the left-right direction and most in the anterior-posterior di-

rection during normal speech, it is best to acquire zHARP images in the sagittal

plane and acquiring images in the coronal plane should be avoided. As well, motion

artifacts can be lessened by reducing the number of repetitions required to image one
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Figure 5.6: The system setup diagram.

slice, although that necessitates a sacrifice of temporal resolution or spatial resolution,

which may be undesirable.

5.3.3 MR Trigging and Vocal Repetition Method

To reduce the inconsistency in vocal repetitions, we design a vocal repetition and

MR triggering system similar to Masaki et al. [28] to help synchronize the tongue

motion in multiple repetitions. This system is also used to trigger the scanner so as

to coordinate the image acquisition. The system setup is shown in Fig. 5.6. In the

system, a continuous periodic stereo sound wave is generated and played on a stereo

sound system during image acquisition.

One channel of the sound simulates the electrocardiogram (ECG) trigger signal,

and is connected to a ECG signal receiver, which in turn triggers the scanner to run
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the zHARP sequence. The other channel is connected to the headphone that the

subject wears in the scanner. During the scan, the subject paces his or her utterance

based on the noise bursts from the headphone. In a typical setting, the trigger period

is 2 seconds. The subject talks in the first second, and breathes in and out during

the second second. In this way the speech is coordinated to start at the same time

relative to the trigger, and the duration of the speech is more consistent. Before the

experiment the subjects are trained for 15-30 minutes to follow the sound rhythm.

5.4 Experiments and Results

5.4.1 Phantom Validation

Our implementation of the zHARP sequence was first validated on phantom ex-

periments. The phantom was connected to a motor, and moved approximately sinu-

soidally back and forth along the main magnetic field direction with a period of 1.02

second. ZHARP images were acquired in the first 460 ms in 20 time frames. The

imaging parameters were: FOV = 150 mm×150 mm, image size = 128×128, TR =

23 ms, tagged slice thickness = 8 mm, imaged slab thickness = 24 mm, z-encoding

period = 30 mm, tag separation = 16 mm. The zHARP image slice was tilted about

70 degrees from the motion direction. Therefore both in-plane and through-plane

(z) motion was exhibited. Fig. 5.7 shows the orthogonally tagged image pairs at two

time frames, and Fig. 5.8 shows the phase images computed from zHARP processing
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(a) Time Frame 1

(b) Time Frame 10

Horizontal tag Vertical tag

Figure 5.7: The zHARP images of the phantom at two time frames. The images with
horizontal tags are acquired with positive z-encoding, and the images with vertical
tags are acquired with negative z-encoding.

at these two time frames.

For validation, we also acquired standard CSPAMM images parallel to the motion

direction. Phantom motion was estimated from CSPAMM images using standard

HARP processing and was taken as the ground truth. The true motion was then

projected onto both the in-plane and through-plane directions of the zHARP image

slices, and compared with the 3D motion computed from zHARP 3D tracking. The

comparison results are shown in Fig. 5.9. Over all time frames, the mean error in the

in-plane direction was 0.346 mm, and the average error in the through-plane direction

was 0.133 mm.
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(a)φx (b) φy (c) φz

Figure 5.8: The zHARP processing results of the phantom images at two time frames.
Top row: time frame 1; bottom row: time frame 10. (a) and (b) are the in-plane
harmonic phase images, and (c) is the z-phase. The phase images are masked so that
only phases inside the phantom are shown.

5.4.2 3D Tongue Motion Imaging

In our in vivo experiments, the speech material studied was “eeoo”. The subjects

were in a supine position in the scanner with both head and neck coils positioned.

The imaging parameters were: tagged slice thickness = 6 mm, imaged slab thickness

= 18 mm, slice separation = 7.2 mm, z-encoding period = 30 mm, FOV = 240 mm,

tag separation = 16 mm, temporal resolution = 52 ms, number of time frames =

12. The acquired k-space matrix size was 64× 22 and 11 k-space lines were acquired

during each repetition. The images were then reconstructed into 128 × 128 matrices
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(a) In-plane motion.
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(b) Through-plane (z) motion.

Figure 5.9: The comparison of average in-plane and through-plane motion computed
from zHARP with standard CSPAMM tagging.

(a) (b) (c)

Figure 5.10: The three slices of the acquired zHARP images on a normal subject
at the first time frame after the tag is applied. The grid pattern is generated by
overlaying the two images tagged in orghogonal orientations. The red contours are
the manually selected tongue regions that were analyzed.

by zero padding k-space. Each zHARP slice was acquired in 4 vocal repetitions in

each of the two tag directions.

In the first experiment, three sagittal slices were acquired. The three acquired
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Slice 1

Slice 2

95 ms 197.5 ms 302.5 ms 407.5 ms 515 ms

Figure 5.11: The 3D displacement maps of two sagittal slices close to the mid-sagittal
plane of the tongue at different time during speech. The mesh grid shows the in-
plane 2D displacement, and the color of the deformed mesh shows the through-plane
displacement.

Figure 5.12: The path lines of selected points inside the tongue in the three sagittal
slices. The brighter color means later time frame. The lip is toward the right.

sagittal slices at the first time frame are shown in Fig. 5.10. Tongue regions were

manually segmented in all slices at the first time frame then tracked in 3D to all later

time frames using zHARP tracking. Examples of 3D displacement maps are shown

in Fig. 5.11. Since the tongue does not move much in the left-right direction, the

through-plane motion in these sagittal slices is small. Fig. 5.12 shows the 3D path
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Figure 5.13: (a) The locations of the 5 axial slices in the tongue. (b)-(d) the path
lines of selected points inside the tongue in axial slice 2, 3, and 4, with lip toward the
right.

lines of selected points inside the tongue.

To better reveal zHARP’s ability to measure through-plane motion, we carried out

another experiment in which five axial slices were acquired (although this orientation

is generally not recommended). The imaging parameters were the same as in the

first experiment. These axial slices are perpendicular to the sagittal image shown in

Fig. 5.13 (a), and their intersections are shown as red lines. Figs. 5.13(b)-(d) show

the 3D path lines of selected points inside the tongue on slices 2, 3, and 4. From

the figures we observe that the upper part of the tongue moves more than the lower
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(a) 95 ms (b) 305 ms (c) 410 ms (d) 512.5 ms

Figure 5.14: The 3D tongue motion shown on two axial images. The tongue regions
in the two axial images are shown in meshes. The background image is a sagittal
CSPAMM image, with lip to the right. The meshes are color coded with the distance
to the shown sagittal image plane.
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Figure 5.15: The strain tensor components on one axial slice at different time frames.
The tongue tip is pointing upward. x goes from top to bottom, y goes from left to
right, and z is in the through plane direction.

part, and it moves more in the anterior-posterior and inferior-superior directions than

in the medio-lateral direction. We also acquired conventional CSPAMM images in

the sagittal orientation for visual assessment. Tongue regions from two of the axial
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images were manually selected and are shown in Fig. 5.14(a). Figs. 5.14(b)–(d) show

the locations of those regions at later times, displayed together with the mid-sagittal

CSPAMM image. It can be seen that the 3D locations of the axial slices match the

tags of CSPAMM image pretty well. Next, we computed the 3 by 3 strain tensors

between pairs of axial images; these results are shown in Fig. 5.15.

5.5 Discussion

The zHARP imaging and 3D strain computation has been validated by Abd-

Elmoniem et al. [69,70,70,82]. Therefore in this work we did not perform an extensive

validation of the zHARP method. Instead, a single phantom experiment was executed

to just validate that our implementation of the zHARP sequence using gradient echo

on a Siemens scanner runs correctly.

As shown, zHARP imaging is very sensitive to motion artifacts because it uses

slice-following tagging. The motion consistency of the tongue is improved using the

specialized triggering system, but it remains a problem especially for patient studies

because the patients often have trouble making consistent repetitions of the utter-

ance. The zHARP image quality may be further improved by reducing the number

of repetitions using advanced imaging techniques. However, since the computation of

the three phase images in zHARP requires at least four image sets (two in each tag

direction), the number of vocal repetitions required for zHARP imaging and motion
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tracking cannot be smaller than 4 and the motion artifacts cannot be completely

removed.

As demonstrated a full 3D strain tensor can be computed from the 3D motion of

two neighboring slices. The 3D strain provides another tool to help better understand

the tongue function and tongue muscle activation, which may not be possible or

accurate without the 3D information.

5.6 Summary

In this chapter, we presented an approach for fast imaging and measurement of 3D

tongue motion and strain during speech using zHARP. In this approach, an zHARP

imaging sequence was implemented using gradient echo on a Siemens scanner, and

imaging parameters were optimized to reduce motion artifacts. To account for the

poor repeatability of tongue motion, a specialized vocal repetition and MR scan-

ner triggering system was designed. The pulse sequence and the triggering system

was validated using a phantom study and its effectiveness was demonstrated using

experiments on tongue during speech.
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Chapter 6

Tracking Tongue Motion in 3D

Using HARP

6.1 Introduction

Despite the existence of fast 3D motion imaging method, i.e., zHARP, tagged

MRI remains the prevailing method in imaging muscle motion because of high image

quality. To measure the 3D motion using tagged MRI, images must be acquired with

different tag orientations and in different image slice orientations, as explained in Sec-

tion 1.4. In scientific research or clinical medicine these images are usually acquired

sparsely in space. Although dense methods for directly imaging three-dimensional

motion have been developed [66,70,86], these methods require too much time for rou-

tine acquisition of dense, three-dimensional motion. Therefore interpolation methods
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are likely to be required in practice and may well be the critical element in promoting

routine imaging of 3D muscle function in the heart and the tongue.

The dense 3D motion of the tissue can be inferred from tagged MRI [43,47,53,57–

59,64,65] through model-based or model-free interpolation of the sparse imaging data

(see also [87]). These methods compute the 3D motion of every point in the tissue,

and often require extensive computation time. The 3D-HARP method developed by

Pan et al. [43] used a sparse 3D mesh model created specifically for the cardiac shape,

and tracked the 3D cardiac motion only on the sparse mesh instead of the complete

myocardium. The method needs no complicated modeling, and thus it is fast and

requires minimal human interaction.

In this work, we develop a method to track 3D tongue motion by extending the

3D-HARP method. In the original 3D-HARP method, the mesh was cup-shaped in

order to resemble the shape of the left ventricle of the heart. In contrast, our approach

uses small planar rectangular meshes that can be placed anywhere in the tongue. In

order to track motion, the approach of Pan et al. formed a deformation field on

their mesh by extrapolating sparse and partial displacement information measured

at intersections of the mesh with the (tagged) image planes. The extrapolation was

formed using a fixed Gaussian kernel whose size was chosen empirically based on

the mesh size and separation of the observed images. In our approach, we use a

thin plate spline in order to interpolate (and extrapolate) the sparse displacement

information. This methodology is more appropriate to the geometry of our meshes
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and less arbitrary in its selection of parameters. Results on 3D tongue images acquired

during speech show that 3D motion can be tracked smoothly and consistently using

our new method.

This chapter is organized as follows. Section 6.2 describes 3D tongue image data

set required for 3D tracking. Section 6.3 presents the thin plate spline based 3D

tongue motion tracking method in details. Section 6.4 shows the experiment results

on 3D tongue motion tracking during speech. Section 6.5 provides a brief discussion

and Section 6.6 summarizes this chapter.

6.2 3D Tongue Image Data

The 3D tagged image data acquisition of the tongue is explained in Section 1.4.

Multiple parallel image slices are acquired sparsely in each of the two image orienta-

tions to cover the tongue. On one image orientation, two sets of images are acquired

separately with orthogonal tag orientations, while the slices in the other image orien-

tation are tagged in one direction perpendicular to the image planes of the first image

orientation. The image stacks are illustrated in Fig. 6.1.

We assume that the three tag directions (two on one image orientation, and one on

the other) are orthogonal. The image coordinate system’s axes are defined as follows

(Fig. 6.1): The x and y axes are normal directions to the tag planes of the two tag

orientations in the first image orientation, and the z axis is normal to the tag planes
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Figure 6.1: 3D tongue MR images.

in the second image orientation. The image planes of the first view are parallel to the

xy plane, and the image planes of the second view are parallel to the yz plane.

6.3 Thin Plate Spline Based 3D Tracking

Our thin plate spline based 3D tracking method extends the 3D-HARP method

of Pan et al. [43]. Because of the structure of tongue body is different from the heart,

a rectangular planar mesh is adopted instead of the cup-shaped mesh in the original

method. The mesh is manually placed completely inside the tongue and is tracked

in 3D in an iterative manner. The mesh is perpendicular to both image orientations,

i.e., it is parallel to the xz plane, so that it intersects with the image planes from
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both orientations. The mesh is initialized in the reference time, and the initial HARP

phase values of grid points of this mesh are computed based on their positions in

space and the knowledge of tag pattern.

Fig. 6.2 illustrates the flow of our thin plate spline based 3D tracking algorithm.

HARP methods are first applied on each of the image sequences, thereby giving

partial knowledge of the components of 3D motion on all image planes. 2D in-plane

motion components are computed for images parallels to the xy plane and 1D motion

component in the normal direction of the tag planes is computed for images parallels

to the yz plane. At each time frame, the intersection points between the mesh and the

image planes are then computed, which give a sparse set of motion observations on the

mesh (from the previous HARP computations). Each component of motion is then

interpolated using a thin plate spline and based on the partial motion observations on

the intersection points so that the motion on all nodes of the mesh are known. The

mesh position is updated until no motion is implied anywhere on the mesh (within a

small tolerance) and then time is incremented, and these steps are repeated. We now

provide details on this overall approach.

6.3.1 Thin-Plate Spline Interpolation

Thin plate spline (TPS) [88] is a widely used interpolation method for scattered

data samples. The interpolated function retains values at the data samples while

minimizing a bending energy function. For 2D space, the bending energy function is
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Figure 6.2: The flow chart of the TPS based 3D-HARP algorithm.

defined as

J(x) =

∫ ∫

R2

(

(

∂2f

∂x2

)2

+ 2

(

∂2f

∂xy

)2

+

(

∂2f

∂y2

)2
)

dx dy . (6.1)

Let the sample points located at x1, ...,xN . The solution of TPS is in the form:

f(x) = a + b · x +
N
∑

i=1

wiU(||x − xi||) , (6.2)
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with

U(r) = r2 log(r2), where r2 = x2 + y2 , (6.3)

and a, b, and wi are the coefficients that can be solved based on the knowledge of

data samples.

In our case of interpolating the motion of the mesh, the data points are located on

a planar mesh although the mesh is located in the 3D space, as shown in Fig. 6.3(a).

We use 2D thin plate splines instead of 3D to interpolate the three motion components

separately. Let the displacement vector be u = (ux, uy, uz)
t. If the motions of a set of

material points xi = (xi, yi, zi)
t are known as ui = (ui

x, u
i
y, u

i
z)

t, the three components

of 3D motion on any point x on the mesh are interpolated using

ux(x, y, z) = ax
0 + ax

1x + ax
2y + ax

3z +

N
∑

i=1

wx
i r

2
i ln r2

i , (6.4)

uy(x, y, z) = ay
0 + ay

1x + ay
2y + ay

3z +
N
∑

i=1

wy
i r

2
i ln r2

i , (6.5)

uz(x, y, z) = az
0 + az

1x + az
2y + az

3z +

N
∑

i=1

wz
i r

2
i ln r2

i , (6.6)

where r2
i = (x − xi)

2 + (y − yi)
2 + (z − zi)

2. The coefficients can be solved in the

similar way as 2D TPS in [88].

In our method, the TPS works better than the Gaussian diffusion used in the orig-

inal 3D-HARP method [43]. First, TPS does not require parameter tuning because

there is no free parameters, while the performance of Gaussian diffusion depends

largely on the choice of kernel size. Second, the values on the sample points are pre-

served in TPS. This is not true in Gaussian diffusion especially when used with large
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kernels. Third, Gaussian diffusion may produce “bumpy” results when using small

kernels, while TPS does not because the minimized energy function is defined over

the whole space.

It should be noted that in our method the TPS is only applied to interpolate the

motion on the mesh, and not in the whole 3D space. Because of the limited number

of points on the mesh, the TPS interpolation is very fast.

6.3.2 Algorithm

Now we describe the algorithm of TPS-based 3D tongue motion tracking in details.

Step 1. Mesh Initialization

The initial mesh M0 is a rectangle in the reference time frame, as depicted in

Fig. 6.3(a). It is parallel to the xz plane so that it intersects both of the two view

images. The mesh is placed completely inside the tongue in order to avoid tracking

errors. The mesh is represented by m by n grid points connected by straight lines.

We denote the initial 3D phase of grid point p as φ0(p) = [φ0
x(p)), φ0

y(p), φ0
z(p)]T . For

every grid point, its initial phase is achieved either by knowledge from the imaging

process or from the reference time frame. At the reference time the tags are just

applied and have not deformed. Therefore the HARP phases are linear functions of

p, i.e.,

φi(p) = W (kip · ni + φ
(0)
i ), i = 1, 2, 3, (6.7)
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Image Plane
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P0

P2

(a) (b)

Figure 6.3: (a) The shape of a 3D tongue mesh. (b) A 3D mesh intersects with an
image plane.

where ni represents the (three) tag orientation, φ
(0)
i is a constant phase shift, ki is

the tag frequency, and W (·) is a wrapping operator.

For every time frame t > 0, the mesh is initialized as the computed mesh from

the previous time frame t − 1. The following steps are then executed iteratively.

Step 2. Calculation of the intersection points on the xy image planes.

For each image slice parallel to xy plane, the intersection points of the mesh and

the image plane are calculated. This is done by finding mesh edges whose vertices are

on different sides of the image plane, as illustrated in Fig. 6.3(b). The intersection

points are then calculated using linear interpolation. The initial phase values of these

points are also calculated as linear interpolation of the initial phase values of the edge

vertices.
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Step 3. 2D motion tracking in x and y axes and interpolation.

For every intersection point xi = [xi, yi, zi] calculated in the previous step, its 2D

in-plane motion in x and y axes, ux(xi) and uy(xi), are tracked using the basic 2D

HARP tracking and HARP refinement. Then for every grid point xt
i of the mesh, the

x and y motion, ux(x
t
i) and uy(x

t
i), is interpolated using Eqns. (6.4) and (6.5).

Assuming the motion in z-direction is zero, the mesh is updated by

xt = xt + u(xt) , (6.8)

where xt is any mesh grid point at time t, and u(xt) = [ux(x
t), uy(x

t), 0]T . By

updating the mesh after each coordinate update (unlike [43]), there is less risk of a

tracking error, and the algorithm should converge faster.

Step 4. Calculation of the intersection points on yz image planes.

The intersection points are calculated in the same way as in Step 2.

Step 5. 1D motion tracking in z axis and interpolation.

Since there are only horizontal tags in the yz image slices, only the 1D motion

component in z axis can be computed from these images. The z-motion of the inter-

section points is approximated by assuming the intersection points do not move in

the y direction, and the z component of motion on every mesh grid point is calculated

using (6.6). The mesh is updated using (6.8) where xt is any mesh grid point at time

t, and u(xt) = [0, 0, uz(x
t)]T .

Step 6. Phase invariance checking.
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Because HARP phase is a material property, the correct positioning of the mesh is

found when the phases at all intersection points agree with the data. Therefore, the

phase invariance property is checked on all intersection points of the updated mesh

and all image planes. The initial phase of the k-th intersection point at the current

time is denoted as φt
k = [φt

x,k, φ
t
y,k, φ

t
z,k]

T . If this point is on the first view image

planes, only the x and y phase can be calculated. The phase difference of this point

is defined as:

δk = max(|φt
x,k − φ0

x,k|, |φt
y,k − φ0

y,k|) . (6.9)

If this point is on the second view image planes, only the z phase can be calculated.

The phase difference is then

δk = (|φt
z,k − φ0

z,k|) . (6.10)

If phase differences of all intersection points are all less than a threshold ǫ, the phase

invariance condition is satisfied.

Steps 2–6 are repeated until the phase invariance condition is satisfied. Then time

is incremented and the process is repeated. When all time frames have been used,

the process is complete.

6.4 Experimental Results

We applied the algorithm on the 3D tongue motion tracking of a normal speaker.

The MR image slices were acquired on a Philips Eclipse 1.5 T scanner when the
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subject uttered “deGoose.” This word was chosen because it involves large front-

to-back motion of the tongue. The acquired image data includes horizontally and

vertically tagged images in the axial view, and horizontally tagged images in the

sagittal view. The imaging parameters were: image size = 128 × 128, pixel spacing

= 1.56 mm, slice thickness = 5 mm, tag spacing = 5 mm, flip angle = 10 degrees.

Ten axial and four sagittal image slices were acquired at each of 18 time frames. The

separation between sagittal images is 7 mm, and between axial images is 8 mm. The

interval between the time frames is 49 ms. The 10 axial slices covered the whole

tongue, and the 4 sagittal slices went from the middle to the left side of the tongue.

Three parallel meshes were placed in the middle of the tongue and tracked. The

meshes were initialized at the reference time frame as 19 mm by 38 mm rectangles

parallel to the xz plane, and they were placed 2 mm apart. The meshes were rep-

resented as 32 by 32 grids. At the reference time frame, these meshes intersect with

5 axial slices and 3 sagittal slices. The relative locations of these meshes and the im-

age slices are illustrated in Fig. 6.4. The displayed image is on the mid-sagittal plane

passing through the center of the tongue. For visualization purpose, the displayed

images are untagged images that were acquired with the same imaging parameters

and spatial locations of the tagged MR images. After initialization, the meshes were

tracked in all 18 time frames using our algorithm.

Fig. 6.5 shows the tracking results of one mesh at four different time frames. .

Fig. 6.6 shows the pathlines of several selected points that are tracked in time on the
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Sagittal Image

Axial Image

Lips

Tongue

Figure 6.4: The three rectangular meshes displayed together with non-tagged sagittal
and axial images.

same mesh. From these figures we can see the tongue moves more in the anterior-

posterior and head-foot directions, and less in the left-right direction. The upper part

of the tongue moves more than the lower part.

We also computed the 3D Lagrangian strain from the 3D tracking results of the

meshes. At each time frame, the strain in x and z axes was computed as the edge

lengths between grid points divided by the lengths at the reference time frame, while

the strain in y axis was computed as the distance between corresponding grid points at

two neighboring meshes divided by the distance at the reference time frame. Fig. 6.7

shows the strain map on the second (middle) mesh in the three axes. The mesh is

projected onto xz plane for display purposes.

For visual assessment, we also acquired vertically tagged images in the sagittal
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Head

Foot

Left

Right

Anterior

Posterior

Lips

(a) Time Frame 1 (b) Time Frame 5

(c) Time Frame 9 (d) Time Frame 13

Figure 6.5: The mesh motion at four different time frames. The image orientations
are shown in (a). The red lines are the intersection of the mesh and the displayed
image planes. The intersection line on the first time frame is tracked in the subsequent
frames and displayed in cyan.

view. These images were not used in the mesh tracking. It was observed visually

that the meshes conformed to the deformation of the tag lines in these images at all

time frames. This enables direct comparison of automatic mesh tracking with visual

assessment of tag motion. Fig. 6.8 shows the positions of the intersections of one of

the tracked meshes with one tagged sagittal image at different time frames.

This algorithm was implemented in Matlab (Mathworks, Natick, MA) on a com-
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Time Frame

Figure 6.6: The 3D pathlines of selected points on the mesh tracked temporally.

(a) Frame = 4 (b) Frame = 8

(c) Frame = 12 (d) Frame = 16

Figure 6.7: The strain map along three axes directions at four time frames. At each
time frame, the strain maps along x, y, and z axes are displayed from left to right.

puter with a 2.8 GHz Intel Pentium 4 processor and 512 MB RAM. In our implemen-

tation it took about 10 seconds for each time frame.
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(a) Frame = 4 (b) Frame = 8

(c) Frame = 12 (d) Frame = 16

Figure 6.8: The intersection lines of the tracked mesh one vertically tagged sagittal
image in different time frame. The image orientation is the same as in Fig. 6.5. The
intersection lines are shown in red.

6.5 Discussion

To guarantee that our algorithm converges, the mesh must be placed entirely inside

the tongue and not too close to the tongue surface. This is because the convergence

relies on the correct 1D/2D tracking of the intersect points between the mesh and the

image planes. If the intersect points lie outside of the tongue, HARP tracking will

fail and the wrong motion will be transfered to the intermediate deformation field
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through TPS interpolation. In this case our algorithm will fail.

Though developed to track 3D meshes, the method can also be used as a way of

tracking arbitrary 3D point of interest in the tissue. This is achieved by automatically

building a small rectangular mesh centered by the point and oriented in the same way

as described in the method. The mesh should be big enough so that it can intersect

at least two image planes in each of the two image orientations at all time frames.

This ensures the intersection points of the mesh with the image planes surround the

point of interest to promise the algorithm can converge. Our method can then be

applied to track the mesh, and the 3D trajectory of the point of interest can be easily

computed from the tracked mesh.

Moreover, it is possible to extend the method to compute the 3D motion of the

whole tongue. The 3D tongue volume can be viewed as a 3D mesh grid with 6-

connected voxels. Instead of computing the intersection of the intersection points of

the mesh with the image planes, we find the intersection points of the volume with

the image planes. The motion on the 3D volume can be iteratively solved in the

similar way by extending the sparse motion information from the image planes.

6.6 Summary

In this chapter we introduced a fast method to track tongue motion in three

dimensions from tagged MR images using thin plate spline interpolation and 3D-
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HARP concept. This method tracks a rectangular planar mesh that is placed inside

the tongue and runs in an iterative fashion. In each iteration, the in-plane motion

components of intersection points of the mesh and the image planes are computed

using 2D HARP, and propagated to the whole mesh through TPS interpolation. By

placing two parallel meshes close to each other, one can compute 3D Lagrangian

strain from the tracking results. Experiments showed this method can track tongue

motion smoothly and accurately.
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Chapter 7

3D Incompressible Motion

Estimation From Tagged MRI

7.1 Introduction

The soft tissues, including cardiac muscles and tongue muscles, are considered

incompressible because they are mainly composed of water, which is incompressible.

It is widely accepted that the volume change of myocardium during the cardiac cycle

is no more than 4% [89, 90], and the tongue muscle motion is incompressible. Yet,

this fact is largely ignored by previous approaches when reconstructing the 3D motion

field from tagged MR images [47, 53, 57–59, 64, 65]. It is also not considered in the

3D-HARP method of Pan et al. [43] or our method of 3D tongue motion tracking

described in Chapter 6.
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Since materials that are incompressible undergo deformations that preserve vol-

umes at all scales and have divergence-free velocity fields, one could improve inter-

polation results to reflect the physical properties of muscle motion by exploiting this

constraint. Song et al. [91] first applied this property in building the 3D velocity of

the heart from cine CT images. Denney et al. [92] directly applied the divergence-free

constraint to reconstruct the 3D displacement field of the LV in an estimation theo-

retic approach. In 2007, Bistoquet et al. [93] used an incompressible deformable model

to recover the motion of LV from anatomical cine MR images. Recently, Bistoquet

et al. [94] constructed nearly incompressible cardiac motion field from non-tagged

MR images using a vector spline with a divergence-free matrix-valued radial basis

function.

There is a key problem with these previous approaches of reconstructing incom-

pressible motion, however. Because the temporal resolution of the image sequences

are relatively large, the deformation between two neighboring time frames may be

large. A velocity field that is approximated as the displacement field divided by the

time interval is not theoretically predicted to be divergence-free. When this fact is

ignored and the underlying field is interpolated in a divergence-free fashion this can

lead to considerable errors when reconstructing motion fields in a time sequence since

the errors in earlier time frames propagate to later time frames. In [94], this error is

reduced by interpolating both forwards and backwards in time and then computing

a weighted average of these solutions. However, solutions generated this way are not
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guaranteed to yield motions that have divergence-free velocity fields or correspond to

incompressible motions.

In this chapter, we propose a framework to reconstruct a 3D, dense, incompress-

ible deformation field from tagged MR images based on divergence-free vector spline

with incomplete data samples. In this framework, incomplete observations of the 3D

displacement vectors on the imaged tissue points are first computed from the tagged

MR images using HARP [40,41] tracking and HARP refinement methods. From the

partial and non-uniform samples we seek a sequence of divergence-free velocity fields

from which the final displacement field is computed by integration. From the recon-

structed dense displacement field, we can also compute the dense 3D Eulerian strain

tensor everywhere inside the tissue, which is not possible in the 3D strain computation

in zHARP because it can only compute the strain on the image slices.

This chapter is organized as follows. Section 7.2 introduces background knowledge

on the properties of incompressible motion and divergence-free vector spline interpola-

tion. Section 7.3 describes our framework of 3D incompressible motion reconstruction.

Section 7.4 demonstrates our method using a simple 2D example, includes the valida-

tion of our method with a cardiac motion simulator, and also shows the experiment

results on both cardiac motion estimation and tongue motion estimation. Section 7.5

provides a discussion, and finally, Section 7.6 summarizes this chapter.
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7.2 Divergence-Free Vector Spline

7.2.1 Properties of Incompressible Motion

The body tissues, including the heart and the tongue, can be approximately con-

sidered as homogeneous, isotropic, 3D, incompressible elastic bodies. From continuum

mechanics [95], one can learn that the motion of such materials exhibits particular

physical properties. We denote x = x(t) = X + u(X, t) as the location of a material

point x at time t with x(0) = X. The physical properties constrain the motion of

incompressible tissues to satisfy these following equivalent conditions:

1. The displacement field u at any time t from reference time 0 is volume preserv-

ing, i.e., det [I + ∇XuX(X, t)] = 1.

2. The velocity field at any time t is divergence-free, i.e., divxv(x, t) = 0, with

v(x, t) = du/dt be the velocity.

3. For small motion, and when subjecting to a known force field f , at equilib-

rium the displacement field satisfies the Navier equilibrium partial differential

equation (PDE) (described later).

Among these conditions, the volume-preserving condition is nonlinear, so it is dif-

ficult to directly apply it to reconstruct incompressible displacement field. But this

condition can be used to verify the incompressibility of a given displacement field. The

second condition — divergence-free velocity — was used in our method to reconstruct
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incompressible displacement fields through building a sequence of divergence-free ve-

locity fields. About the third condition, it has been shown that under certain forces

and small deformations the Navier PDE has analytical solutions that are equivalent

to the second condition. These are explained in details in the rest of this section.

7.2.2 Vector Spline

Vector splines (VS) were first proposed by Amodei et al. [96] to interpolate a vector

field using known vector-valued data samples. Comparing to scalar-valued spline

interpolation, e.g., the thin-plate spline, B-spline and so on, the vector spline couples

the components of the vector field together instead of treating them separately. In this

way, it can better represent the underlying physical properties of a vector field. Given

N points in space xn = [xn, yn, zn]T , n = 1, . . . , N , and vector-valued observations

vn, n = 1, . . . , N , at these points, the VS interpolates a smooth vector field over the

whole space. Specifically, the VS finds a vector field v(x) that minimizes

Jα,β(v) =

∫

[α||∇k(divv(x))||2 + β

3
∑

i=1

||∇k(rotv(x))i||2]dx , (7.1)

subject to v(xn) = vn, n = 1, 2, . . . , N ,

where α and β are the weighting coefficients, divv = ∇ · v yields the divergence of

a vector field, and rotv = ∇ × v yields the curl. By weighting the two terms in

Eqn. (7.1) differently, a vector spline can control the divergence and vorticity of the
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vector field separately. It has been shown that (7.1) has the closed form solution [96]

v(x) =
N
∑

n=1

K(x − xn) · cn + p(x) , (7.2)

where cn are the unknown coefficients and K(x) is the matrix-valued kernel function

given by

KVS(x) = [
1

β
△I + (

1

α
− 1

β
)∇∇T ]h(x) , (7.3)

where I is the identity matrix, ∇ is the gradient operator, △ is the Laplacian operator,

and h(x) = ||x||2k+1 is the solution to △k+1h(x) = δ(x). Also, p(x) is the polynomial

function of order k given (for k = 1) by

pVS(x) =

















1 x y z 0 0 0 0 0 0 0 0

0 0 0 0 1 x y z 0 0 0 0

0 0 0 0 0 0 0 0 1 x y z

















· d = A(x) · d , (7.4)

where d is a 12 by 1 vector of unknown coefficients.

The coefficients cn and d in VS are solved using the known vector values on the

sample points by formulating









K P

PT 0

















C

d









=









V

0









, (7.5)

where K is a 3N × 3N matrix with (K)ij = K(xi − xj), PT = [AT (x1), ...A
T (xN)]T ,

V = [vT
1 , ...,vT

N ]T , and C is a 3N×1 vector with C = [cT
1 , ..., cT

N ]T . After the unknown

coefficients C and d are solved, the vector value at any point x can be computed using

Eqn. (7.2).
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The sample data are often corrupted by noise and therefore the spline should not

precisely match the data but should use it instead to guide the fitting of a smoothing

spline. Assuming Gaussian noise, the smoothing VS solves

arg min
v

C(v) = ρJ(v(x)) +
1

N

N
∑

n=1

||v(xn) − vn||2 , (7.6)

where ρ is a smoothing parameter, and J is the regularization term as defined in

Eqn. (7.1). The smoothing VS solution has the same form as Eqn. (7.2), and its

coefficients are solved using









K + ρI P

PT 0

















C

d









=









V

0









. (7.7)

Note when the weighting coefficients α = β and k = 1, the function in Eqn. (7.1)

becomes the same as the bending energy function in the thin plate spline. In this

case the three components of the interpolated vector field (Eqn. (7.2)) are decoupled

because the kernel matrix K is diagonal. So the VS solution is equivalent to interpo-

lating the three components independently using a thin plate spline. For this reason,

we can call the VS with kernel as in Eqn. (7.3) the thin plate vector spline.
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7.2.3 Divergence-Free Vector Spline

As a special case of VS, the divergence-free vector spline (DFVS) constrains the

VS to be divergence-free by solving

arg min
v

JDF(v) =

∫ 3
∑

i=1

||∇k(rotv(x))i||2dx , (7.8)

subject to: divv(x) = 0, and v(xn) = vn, n = 1, 2, ..., N.

The divergence-free vector spline (DFVS) solution is similar to that of VS except that

the kernel matrix becomes

KDF(x) = [△I−∇∇T ]h(x) , (7.9)

and p(x) is also constrained to be divergence-free

pDF(x) =

















1 x y z 0 0 0 0 0 0 0

0 0 0 0 1 x y z 0 0 0

0 −z 0 0 0 0 −z 0 1 x y

















· d . (7.10)

Similarly, the coefficients in the DFVS and smoothing DFVS can be solved using

Eqns. (7.5) and (7.7), respectively.

7.2.4 Navier Equilibrium PDE and Vector Spline

The Navier equilibrium PDE describes the physical property of a homogeneous

isotropic elastic body with small motion. When subject to a force field f(x) and

assuming small deformations at equilibrium, the displacement field u(x) satisfies

µ△u(x) + (µ + λ)∇divu(x) = f(x) , (7.11)
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where µ and λ are the Lamé coefficients, and for an incompressible object µ = 0. For

certain force field, Eqn. (7.11) has closed-form solution. For example, for a smooth

field f(x) = f(x) · c with constant c, the solution is given by

u(x) = [
1

µ
△I− µ + λ

µ(2µ + λ)
△△T ]g(x) · c = KEBS(x)c , (7.12)

where f(x) = △g(x). This gives the elastic body spline (EBS) [97]. KEBS is the basis

kernel matrix, and is determined by the choice of the force field. Davis et al. [97]

derived the kernel matrix of EBS for the force fields in the form of f(x) = ||x||2k−1,

and later Kohlrausch et al. [98] extended the EBS using Gaussian forces.

The EBS is closely related to the VS. In fact, when α = 2µ+λ, β = µ, and f(x) =

||x||2k−1, then KEBS and KVS are equal, which means EBS and VS are equivalent.

Therefore, when µ → 0 EBS interpolates the displacement field of an incompressible

object under small deformations, and it becomes DFVS (cf. Eqn. (7.9)).

The Navier equilibrium PDE is valid only for small deformations. In this case

the displacement field can be considered divergence-free (for incompressible motion)

because the velocity can be approximated to be constant during the deformations.

For large deformations, neither EBS nor DFVS can be directly applied to interpolate

incompressible deformation fields. However, since the velocity field of an incompress-

ible object is divergence-free then the incremental displacement over a small time

interval δt is u(x, t) ≈ v(x, t)δt, and is approximately divergence-free. We will use

this principle in the next section.
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7.2.5 Smoothing VS from Incomplete Samples

The motion computed from tagged MR images are sparse and incomplete because

(1) the imaged tissue points are non-uniformly and sparsely distributed in space,

and (2) only selected components of the displacement vectors are known, i.e., the

components in the normal directions of tag planes. The incomplete sample data of

a vector field can be written as: {xn, en, wn} for n = 1, 2, . . . , N , where en is a unit

vector representing the projection direction, and wn = en · v(xn) is the projection of

the 3D vector v(xn) on en. Given N sample points, the minimization problem of a

smoothing VS from incomplete data can be expressed as

arg min
v

C(v) = ρJ(v(x)) +
1

N

N
∑

n=1

(eT
nv(xn) − wn)2 . (7.13)

Arigovindan [99] showed that the solution to this problem is

v(x) =
N
∑

n=1

K(x − xn)encn + p(x) , (7.14)

where the coefficients cn are scalars, and K(x) and p(x) are the same as in VS.

By replacing K with KDF, and p with pDF, Eqn. (7.14) describes the solution to

a smoothing DFVS with incomplete samples. The coefficients cn are found using

Eqn. (7.7) where in this case K is a N × N matrix with (K)ij = eT
i K(xi − xj)ej ,

PT = [AT (x1)e1, . . . ,A
T (xN)eN ] and V = [w1, .., wN ]T .
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7.3 Incompressible Motion Reconstruction

7.3.1 3D Data Set and Preprocessing

The 3D image data set for the heart and the tongue is acquired as described in

Section 1.4. All of the images are processed using HARP [40, 41] to yield sequences

of harmonic phase images. The HARP phases at the reference time t0 are estimated

from the HARP images at the first time frame. At t0, the tagging phase φ is a linear

function of the point’s coordinate x, and wrapped to the range [−π, π), i.e.,

φ(x, t0) = W (kx · e + φ0) , (7.15)

where k is the known tagging frequency, e is the normal vector of the tag planes, φ0

is an unknown phase offset, and W is a phase wrapping operator. By assuming the

tags do not deform much at the first time frame, φ0 can be estimated from the HARP

images at the first time frame in the same way as in Tecelao et al. [74]. Therefore,

we can construct synthetic phase images at t0 using Eqn. 7.15. The tissue points at

each time frame are then tracked back to t0 using standard HARP tracking [40] and

HARP refinement. As illustrated in Fig. 1.6, for tagging direction e and a 3D spatial

point xj that is imaged at time t, if this point comes from Xj = xj(t)−u(xj(t), t) at

reference time t0, then HARP tracking computes the projection of its displacement

u(x, t) onto e as:

wj = eTu(xj, t) = eT (Xj − xj) . (7.16)
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On the image planes acquired with two tag orientations, for example the SA

images in cardiac imaging, two projections of the displacement of each tissue point

are computed. On the image planes acquired with one tag orientations, for example

the LA images in cardiac imaging, only one projection is computed. Therefore except

for points at the intersections of the image planes from the two orientations, only

partial knowledge of the displacement is available for any other pixel on the observed

images. (Of course, no observations are available at 3D points that do not lie on an

observed image plane.) Because of the irregular geometry of the combined positions

of image planes—which are sometimes not even acquired with uniform spacing—the

locations of the sample points, each having partial information, are typically quite

irregular.

7.3.2 3D Incompressible Displacement Field Re-

construction

7.3.2.1 Problem Statement

HARP tracking provides N incomplete and non-uniform data samples {xn, en, wn}

at any time frame (see Eqn. (7.16)). Our goal is to reconstruct a 3D, dense, incom-

pressible displacement field u(x) from these data samples such that en · u(xn) = wn.

As discussed earlier, the spatial velocity field v(x) giving rise to such a deforma-

tion must be divergence-free, i.e., divv(x) = 0. Based on this physical property, we
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want to reconstruct the incompressible displacement field u(x) through integrating

divergence-free velocity fields.

We denote the integration variable as s, which takes on values in the interval [0, 1],

and the velocity of x(s) at s be v(x(s), s) . We define

w(x, s) =

∫ s

0

v(x(τ), τ)dτ, and v(x(τ), τ) =
dw(x, τ)

dτ
, t ∈ [0, 1] , (7.17)

with x(s) = x+w(x, s). We then have u(x) = w(x, 1). Thus the dense incompressible

deformation reconstruction problem can be formulated as follows: Given N sample

points xn for n = 1, 2, ..., N , and at each sample point the projection of its 3D

displacement u(xn) on en is known as wn = eT
nu(xn), find a dense displacement field

u(x) such that

u(x) =

∫ 1

0

v(x(τ), τ)dτ, with divxv(x, τ) = 0 , ∀τ ∈ [0, 1] . (7.18)

7.3.2.2 Discretization

The incompressible displacement field reconstruction problem can be reduced to

a finite-dimensional problem by dividing the integration into discrete steps, i.e., sm =

mδ for m = 0, 1, . . . , M with δ = 1/M . The discretization is illustrated in Fig. 7.1.

Within each interval the velocity is assumed to be constant, so

w(x(s), s) = w(x(sm), sm) + v(x(sm), sm) ∗ (s − sm) , (7.19)

for s ∈ [sm, sm+1), and u(x) = w(x, 1) = δ
∑M−1

m=0 v(x(sm), sm). v(x(s), s) is not the

true myocardial velocity, but rather a computational tool for the estimation of the
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Figure 7.1: Illustration of the process of integrating velocity fields at discrete steps
to compute the displacement field.

displacement field.

7.3.2.3 Velocity Computation

We use DFVS from incomplete data samples to interpolate the divergence-free

velocity fields separately over each integration interval. The velocity fields are com-

puted sequentially starting from s0 = 0 through sM = 1. Let us denote rn(sm) =

en · v(xn(sm), sm) for any step sm, and the data samples at sm are written as

{xn(sm), en, rn(sm)} for n = 1, . . . , N .

At step sm, the velocity fields at steps between s0 and sm−1 have been com-

puted. So we have x(si) = x + w(x, si) for i = 0, ..., m − 1, and w(x, sm) =

δ
∑M−1

i=0 v(x(si), si). The velocity at any sample point xn(sm) at sm is approximated

by taking the first order expansion

u(xn) −w(xn(sm), sm) ≈ v̂(xn(sm), sm)(1 − δm) . (7.20)

Since the complete knowledge of u(xn) is not available and only its projection on en,

i.e., wn, is known, the projection of the velocity on en can be approximated using

rn(sm) = en · v̂(xn(sm), sm) =
wn − en · w(x, sm)

1 − δm
. (7.21)
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Figure 7.2: The estimation of velocity projection at a sample point xn. The velocity
at s is estimated using approximated approximation, and its projection in en is used
to interpolate the 3D velocity vector at any point.

The linear approximation of velocity at a sample point is illustrated in Fig. 7.2.

With the N data samples, the continuous velocity field v(x, sm) is interpolated

with smoothing DFVS using Eqns. (7.13) and (7.14) instead of exact DFVS, i.e.,

ρ > 0 in Eqns. (7.13) and (7.7).

From Taylor’s expansion, the first order approximation of the velocity is accurate

up to the order (1−δm)2. Therefore it is less accurate at smaller s and more smoothing

is required at earlier steps. So the smoothing parameter ρ should be chosen to be

large at small s and grow smaller as s approaches 1. At sM−1, ρ should be set to 0 so

that the final displacement w(xn, 1) matches the original data samples exactly—i.e.,

en ·u(xn) = en ·w(xn, 1) = wn for n = 1, . . . , N . In practice, we choose the smoothing
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parameter at tm as ρm = M−m−1
M−1

ρ0, where ρ0 is determined empirically as described

below.

7.3.2.4 Multi-Resolution

The computation of our algorithm is dominated by solving Eqn. (7.7), because the

computational complexity of direct matrix inversion is O(N3). To reduce computation

time, a multi-resolution scheme is adopted. The sample points are subsampled for

smaller m, so that only a subset of the samples is used in the interpolation. The

subsample rate increases as the algorithm progresses, and the complete set of samples

is used only in the last few integration steps. This multi-resolution scheme can greatly

reduce the computation while not affecting the accuracy of the displacement field

reconstruction.

7.3.2.5 The Algorithm

Given sample points x(t0) = xn, the projection directions en, and wn = en ·u(xn)

for n = 1, . . . , N , and a dense 3D grid of data points yk for k = 1, . . . , K of which

the 3D displacement vectors are to be computed, the dense displacement field is

reconstructed as in Algorithm 7.1.
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Algorithm 7.1 Dense 3D Incompressible Displacement Field Reconstruction

1: Initialize ρ0, M . Set yk(0) = yk, w(yk, 0) = 0, and w(xn, 0) = 0 for all k and n.

2: for m = 0 to M − 1 do

3: Set sm = mδ, ρm = ρ0(M − m − 1)/(M − 1);

4: Downsample the data points x(tm) if needed;

5: Compute rn(sm) using Eqn. (7.21) for all sample points;

6: Solve Eqn. (7.7) to compute the interpolating coefficients with samples

{xn(sm), en, rn(sm)} and ρ = ρm;

7: Compute the velocities v(yk(sm), sm) and v(xn(sm), sm) using Eqn. (7.14);

8: Set w(xn, sm+1) = w(xn, sm) + δv(xn(sm), sm), w(yk, sm+1) = w(yk, sm) +

δv(yk(sm), sm), xn(sm+1) = xn(sm) + w(xn, sm+1), and yk(sm+1) = yk(sm) +

w(yk, sm+1);

9: end for

10: Set u(xn) = w(xn, sM) and u(yk) = w(yk, sM).

7.4 Experiment Results

7.4.1 A 2D Example

We demonstrate our approach using a simple example as shown in Fig. 7.3(a).

In this example, we want to reconstruct the 2D dense deformation field using six

landmarks. Four landmarks are the corner points of the grid, and are fixed during

the deformation. The other two landmarks A and B move to C and D respectively. For
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Figure 7.3: A simple 2D example. (a) The 6 matched landmarks marked in circles:
four fixed corner points, point A matching to point C, and point B matching to point
D. (b) The temporal trajectories of the 6 landmarks computed using our approach.

comparison, we reconstructed the deformation fields using direct TPS interpolation,

direct DFVS interpolation, Bistoquet’s method, and our approach.

The trajectories of points A and B computed using our method are shown as the

lines in Fig. 7.3(a) that connect A to C and B to D. Fig. 7.3(b) shows the temporal

trajectories of the 6 landmarks.

The deformation fields computed from all the four methods are shown in Fig. 7.4.

It is observed that the areas of the mesh grids are not preserved in TPS and DFVS

methods, and they are better reserved in Bistoquet’s approach and our approach. We

also computed the Jacobian determinant of the deformation computed using the four

methods, and show them in Fig. 7.5. The Jacobian determinant measures the com-

pressibility of the deformation field, and a value of 1 indicates incompressible motion.

The TPS interpolation results a smooth deformation field, but the incompressibility is
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(a) TPS

(b) DFVS

(c) Bistoquet’s

(d) Our approach

Figure 7.4: The deformation fields computed using (a) thin-plate spline interpolation,
(b) direct DFVS interpolation, (d) Bistoquet’s approach, and (d) our approach. Left
column: the deformed meshes. Right column: the vector fields.
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(a) TPS (b) DFVS (c) Bisotquet’s (d) Our approach

Figure 7.5: The Jacobian determinant of the deformation computed using (a) TPS,
(b) DFVS, (c) Bistoquet’s approach, and (d) our approach. (1 means incompressible
deformation.)

not preserved because the two components of motion are computed independently. In

the DFVS result, the incompressibility is not preserved because for large deformations

it is not correct to assume the deformation field to be divergence-free. Bistoquet’s

approach improved the incompressibility using the backward-forward averaging strat-

egy with a considerable amount of errors. Our method successfully reconstructed the

incompressible deformation field with negligible error resulting from discretization.

7.4.2 Validation with Cardiac Motion Simulator

To validate the method, we performed a simulation experiment using a cardiac

motion simulator for tagged MRI [100]. In the simulator, the LV is defined as a

deformed prolate spheroidal shell, with focal radius 35 mm, inner radius 0.35 and

outer radius 0.55. The motion is controlled by 13 time-varying parameters that

define rotation, translation, shears, ellipticallization, torsion, and radially dependent

compression. In our simulation, the parameter that controls compression was set
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to zero so that the simulated motion is incompressible. The values of the other

parameters came from a bead experiment on a dog heart [101].

We simulated tagged images on six SA image planes with 10 mm separation and

six radial LA image planes with a 30 degree separation. On each SA image plane

two images were generated with horizontal and vertical tags, respectively. One image

was generated on each LA image plane with tag planes parallel to the SA image

planes. The tag spacing was 10 mm, and the pixel size of the images was 1.17 mm.

The tags were applied at end-diastole and the sequences of images were generated

throughout the cardiac cycle. The period of cardiac cycle was 1 second, and 16 time

frames were generated with a temporal separation of 66 msec. Example images in

both undeformed and deformed states are shown in Fig. 7.6. We then computed the

incomplete 1D/2D displacements of all points inside the LV and on these images from

every time frame back to the reference time, and used them as the samples in our

algorithm.

The six SA images encompassed a slab with 50 mm thickness. For validation,

we sampled the slab into 46 slices with 1.11 mm separation. The LV motion inside

the slab can be directly computed from the simulator and is taken as the ground

truth. Our method was then applied to compute the 3D displacement vectors of

all LV points in the 46 slices from the sample points on the simulated six SA and

six LA slices with M=20 steps, and the smoothing parameter ρ0 = 1.15, and the

results were compared to the ground truth. To compare, we also computed the
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(a) (b) (c)

Figure 7.6: Simulated tagged MR images. SA images with (a) horizontal tags and (b)
vertical tags, and (c) LA image with horizontal tags at (top row) undeformed state
and (bottom row) deformed state.

displacement field using Bistoquet’s method [94], i.e., direct divergence-free spline

interpolation with backward-forward averaging. In Bistoquet’s method, we tested

both the divergence-free matrix-valued smooth kernel (MVSK) in Bistoquet et al. [94]

K(x) = [△I−∇∇T ]e−α||x||2, and the DFVS kernel. The results were then compared

to the ground truth.

We first computed the error between the reconstructed displacement field and the

ground truth at all LV points on the 46 slices. The RMS error of the x, y, and z

components of the three approaches at all time frames are shown in Table 7.1. The

mean magnitudes of the error are shown in Fig. 7.7(a). We observed that Bistoquet’s
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Figure 7.7: The comparison of our method against Bistoquet’s method with both
DFVS and MVSK. (a) The average displacement error and (b) the average error of
the Jacobian determinant over all time frames.

method with MVSK produced much larger error at all time frames than with DFVS.

At the beginning and end of the cardiac cycle when the cardiac motion is small, both

Bistoquet’s method with DFVS and our method give very small error. However, in

the middle of the cardiac cycle when the cardiac motion is big, the error of Bistoquet’s

method with DFVS is about 10 times greater than our method.

To evaluate the incompressibility of the resulting displacement fields, we also

computed the determinant of Jacobian using central difference operators. The average

absolute difference between the Jacobian determinant and unity at all the time frames

were shown in Fig. 7.7(b). It can be seen that incompressibility is much better

preserved in our method than Bistoquet’s approach at all time frames. At time

frame 9 when all methods have the largest error, the average error of the Jacobian

determinant of our method was 0.0056, Bistoquet’s method with DFVS was 0.052,
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Table 7.1: RMS error (mm) on the deformation components.

Our method Bistoquet’s, DFVS Bistoquet’s, MVSK

Time x y z x y z x y z

2 0.0005 0.0006 0.0002 00032 0.0033 0.0017 0.1637 0.1707 0.1038

3 0.0014 0.0012 0.0027 0.0038 0.0039 0.018 0.1743 0.1734 0.1185

4 0.0039 0.0062 0.0016 0.0205 0.0208 0.0098 0.2191 0.1969 0.1114

5 0.0109 0.0193 0.0075 0.1008 0.1004 0.0426 0.2410 0.2842 0.3684

6 0.0149 0.0250 0.0073 0.1034 0.0968 0.0502 0.3125 0.3673 0.2799

7 0.0161 0.0173 0.0060 0.1993 0.1888 0.0572 0.3602 0.3934 0.2230

8 0.0227 0.0180 0.0077 0.2947 0.2788 0.0650 0.3902 0.3901 0.2849

9 0.0269 0.0203 0.0098 0.3658 0.3473 0.0716 0.4503 0.4377 0.3588

10 0.0212 0.0158 0.0063 0.2644 0.2500 0.0599 0.3750 0.3872 0.2593

11 0.0114 0.0110 0.0043 0.1075 0.1014 0.0362 0.2511 0.2872 0.1537

12 0.0052 0.0094 0.0033 0.0339 0.0336 0.0169 0.1349 0.1446 0.0851

13 0.0009 0.0013 0.0003 0.0046 0.0048 0.0019 0.0340 0.0449 0.0336

14 0.0003 0.0003 0.0000 0.0004 0.0003 0.0000 0.0079 0.0164 0.0111

15 0.0007 0.0007 0.0002 0.0025 0.0026 0.0011 0.1219 0.1054 0.0890

16 0.0006 0.0005 0.0001 0.0015 0.0015 0.0007 0.0929 0.0744 0.0948

mean 0.0085 0.0092 0.0033 0.0941 0.0896 0.0260 0.2081 0.2171 0.1610
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(a) (b) (c)

Figure 7.8: The Jacobian determinant of deformation fields. (a) Bistoquet’s method
with MVSK, (b) Bistoquet’s method with DFVS, and (c) our method.

and Bistoquet’s method with MVSK was 0.081. This is consistent with the fact

that the divergence-free assumption of the displacement field is only valid for small

deformations, and is farther from the truth for larger deformations. Fig. 7.8 shows

the Jacobian determinant computed from the three methods on one of the slices at

time frame 9.

7.4.2.1 Parameter Optimization

The accuracy of our method depends on the choice of the number of steps M and

the smoothing parameter ρ0. To determine the optimal parameters, we applied our

method to time frame 9 with varying M and ρ0. The time frame 9 was picked because

the deformation was the largest among all the time frames.

We first fixed the step number M = 20, and reconstructed the displacement fields

with different ρ0. The average displacement error is shown in Fig. 7.9. The error is

small for all the selections of ρ0 (< 0.045 mm). It is minimal for ρ0 = 1.15 and slowly
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Figure 7.9: The average displacement error of our method with varying smoothing
parameter ρ0.

increases when ρ0 increases. In addition, it is also shown that our method is pretty

robust to the selection of ρ0 because the error remains small for a reasonably large

ρ0.

Next, we computed the error by varying the number of steps and fixing ρ0 = 1.15,

and the results are plotted in Fig. 7.10. The displacement error rapidly decreases

when the the number of steps increases. This is expected because when the number

of integration steps increases, the step interval decreases. Therefore the linear ap-

proximation of velocity at each step is more accurate. Because the computation time

directly depends on the number of steps, in practice we choose step number M = 20

as a tradeoff.

149



5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of steps

A
v

er
ag

e 
er

ro
r 

(m
m

)

Figure 7.10: The average displacement error of our method with varying numbers of
integration steps.

7.4.3 In Vivo Cardiac Motion Estimation

CSPAMM tagged MR images of the heart were acquired on a normal subject using

a spiral sequence on a Phillips 3T Achieva MRI scanner (Philips Medical Systems,

Best, NL). An approved IRB protocol was used and informed consent was obtained.

The imaging parameters were: tag spacing = 12 mm, image size = 256×256, FOV

= 320 mm, temporal resolution = 30 msec. The number of time frames was 20. We

acquired both horizontally and vertically tagged images on twelve parallel SA image

planes with a 4 mm slice separation. Eight LA images were acquired with horizontal

tags; however, only six of these were used in our experiments because the other two

were corrupted with artifacts. We divided the SA slices into two interleaved groups

(even and odd slice numbers) so that the slice separation within each group is 8 mm.

The first group of six SA slices and all six LA slices were used to reconstruct a 3D,
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(a) Short axis (b) Long axis

Figure 7.11: A tagged (a) SA and (b) LA image. The SA image shown is the product
of the separately acquired horizontal and vertical tagged images only for visualization
purpose. The lines overlaying these images depict the geometry of the acquired (a)
LA and (b) SA images.

dense, incompressible displacement field of the LV using our approach. The six SA

slices in the second group were used for validation. The relative slice locations of

the six SA slices in the first group and the six LA slices are illustrated in Fig. 7.11.

All these images were then processed with HARP and HARP refinement to get the

harmonic phase images and to compute the 2D motion of all the imaged tissue points

on the SA slices from each imaged time frame back to the reference time, and the 1D

motion of all the imaged tissue points on the LA slices. The LV myocardium regions

in all the tagged images were manually delineated.

We applied Algorithm 7.1 with M = 20 integration steps and a smoothing param-

eter ρ0 = 1.15. The reconstructed 3D displacement field in the LV regions of three SA

slices are shown in three views in Fig. 7.12 at time frames 5, 10, 15, and 20. Since the
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(a) Time 5 (b) Time 10 (c) Time 15 (d) Time 20

Figure 7.12: The 3D displacement fields illustrated using three SA slices. From top to
bottom: three different views; From left to right: the displacement fields at different
time frames.

displacements fields are Eulerian, the displacement vectors shown in Fig. 7.12 end on

the spatial slices from which the data is collected, and start from where these material

points are located at the reference time. The reconstructed displacements of points

on the LV in the validation slices were compared with the 2D displacement projection

computed using HARP. For comparison, we also computed the displacement fields at

all time frames using Bistoquet’s approach [93] with DFVS. The average displace-

ment errors on the validation slices of the two methods are shown in Fig. 7.13(a). In

both methods, we observe larger error at the end of systole (time frame 10) because

the displacement is larger. At time frame 10, the average displacement error of our
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Figure 7.13: The comparison of our method with Bistoquet’s method using DFVS.
(a) The average displacement error and (b) the average error of Jacobian determinant
over all time frames.

method was 0.61 mm, and Bistoquet’s method was 1.08 mm. Figs. 7.14(a) and (b)

show the displacement error maps on the 5th validation slice at time frame 10 of our

method and Bistoquet’s method, respectively.

We also compared the incompressibility of the reconstructed motion fields using

using the proposed method and Bistoquet’s method with DFVS, and the average

absolute error between Jacobian determiant and unity at all time frames is shown in

Fig. 7.13(b). At time frame 10 when the heart deforms the most, the average absolute

difference between Jacobian determinant and unity of our approach was 0.043. The

deviation was mainly caused by both spatial and temporal discretization. The average

deviation of Bistoquet’s method was 0.081. Figs. 7.14(c) and (d) show the Jacobian

determinant resulting from the two methods at the 5th validation slice.

With the dense 3D displacement field, we can readily compute the 3D Eulerian
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(a) Our method (b) Bistoquet’s method

(c) Our method (d) Bistoquet’s method

Figure 7.14: (a-b) The displacement error maps on one slice for (a) our method and (b)
Bistoquet’s method with DFVS. (c-d) The Jacobian determinant of the deformation
field computed on the same slice for (c) our method and (d) Bistoquet’s method with
DFVS.

strain tensor (cf. [95]). We computed the 2D circumferential and radial strain, and

the longitudinal strain in the through-plane dimension on the SA slices. The results

on one of the SA slices are shown in Fig. 7.15. One possible benefit of our new ap-

proach is to reduce the so-called “zebra artifacts” which are known to yield artifactual

circumferential patterns in traditional HARP strains [102].
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Figure 7.15: The 3D Eulerian strain in the LV region on one SA slice.

7.4.4 Tongue Motion Reconstruction

Our method was applied to reconstruct the 3D tongue motion of a normal subject

during speech. The tagged MR images were acquired on a Siemens 3T Tim-Trio MRI

scanner (Siemens Medical Solutions, Malvem, PA). The imaging parameters were:

tag spacing = 12 mm, image matrix size = 128 × 128, pixel spacing = 1.875 mm,

temporal resolution = 47 msec, number of time frame = 20. The image acquisition

was coordinated using the triggering system as described in Chapter 5. The speech

material studied was “eeoo”. Tagged MR images were acquired on 10 axial slices
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Figure 7.16: Tagged (a) axial and (b) sagittal images. The axial image shown is the
product of the separately acquired horizontal and vertical tagged images. The lines
overlaying these images are the intersections of the shown images with the acquired
(a) sagittal and (b) axial images. The red circles show the tongue location in the
images.

and 7 sagittal slices to cover the whole tongue. On each axial slice, two images

were acquired with orthogonal tag directions. On each sagittal slice, one image were

acquired with tag planes parallel to the axial slices. Fig. 7.16 shows the relative

locations of the image slices. The reconstructed 3D incompressible motion at all time

frames are shown in Figs. 7.17 to 7.21. The three shown slices are the 1st, 4th, and

7th axial slices whose locations are shown in Fig. 7.16(b) as the 1st, 4th, and 7th

lines from the top.

The reconstructed 3D motion may promote the understanding of tongue motion

patterns during speech. By visually checking the images we have found that the

transition from “ee” to “oo” happens mostly from the 8th to 12th time frames. It
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can be seen from the reconstructed motion that, during “ee” (see Figs. 7.17 and 7.18),

the top part of the tongue (see the top slice in the figures) does not move much, while

the bottom part (see the bottom slice in the figures) is moving forward and a little

upward. This is because the top of the tongue is touching the palate, which prevents

the tongue from moving up. In the meantime, the muscle at the bottom part of the

tongue is moving up and forward to push the tongue again the palate. During the

transition from “ee” to “oo” (the 8th to 12th frames, shown in Figs. 7.18 and 7.19),

the whole tongue starts to move downward and backward, and the top part of the

tongue moves more than the bottom part. After the transition (see Figs. 7.20 and

7.21), the tongue holds its position to pronounce “oo” continuously.

We also computed the 3D Lagrangian strain tensor using the reconstructed 3D

dense motion. Figs. 7.22, 7.23, 7.24, and 7.25 show the components of Eulerian strain

tensors on four slices at different time frames. Though the exact relationship between

3D strain and tongue muscle activation remains a challenging problem and requires

more exploration, some interesting observations can be found from these images.

Overall the top part of the tongue exhibits more strain than the bottom part. In

the first slice from the top (Figs. 7.22), during the transition from “ee” to “oo”, the

tongue expands in the anterior-posterior (x) direction, and shortens in the head-foot

(z) direction. It also shortens a little in the lateral (y) direction. This observation

may be explained by the tongue behavior. To pronounce “ee”, the tongue is raised

up and elongated upward from its rest position so that it can touch the palate. In
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Time Frame 2 Time Frame 3

Time Frame 4 Time Frame 5

Figure 7.17: The 3D displacement fields of the tongue illustrated using three axial
slices at frames 2 to 5. (The tongue tip is toward the right. )
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Time Frame 6 Time Frame 7

Time Frame 8 Time Frame 9

Figure 7.18: The 3D displacement fields of the tongue illustrated using three axial
slices at frames 6 to 9. (The tongue tip is toward the right. )
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Time Frame 10 Time Frame 11

Time Frame 12 Time Frame 13

Figure 7.19: The 3D displacement fields of the tongue illustrated using three axial
slices at frames 10 to 13. (The tongue tip is toward the right. )
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Time Frame 14 Time Frame 15

Time Frame 16 Time Frame 17

Figure 7.20: The 3D displacement fields of the tongue illustrated using three axial
slices at frames 16 to 17. (The tongue tip is toward the right. )
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Time Frame 18 Time Frame 19

Time Frame 20

Figure 7.21: The 3D displacement fields of the tongue illustrated using three axial
slices at frames 18 to 20. (The tongue tip is toward the right. )
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Figure 7.22: The components of 3D Eulerian strain tensor on the 1st axial slice
at different time frames. The slice location is shown as the 1st line from top in
Fig. 7.16(b). The x, y and z axis are as defined in Fig. 7.16 and the tongue tip is
upward.
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Figure 7.23: The components of 3D Eulerian strain tensor on the 3rd axial slice
at different time frames. The slice location is shown as the 3rd line from top in
Fig. 7.16(b). The x, y and z axis are as defined in Fig. 7.16.
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Figure 7.24: The components of 3D Eulerian strain tensor on the 5th axial slice
at different time frames. The slice location is shown as the 5th line from top in
Fig. 7.16(b). The x, y and z axis are as defined in Fig. 7.16.
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Figure 7.25: The components of 3D Eulerian strain tensor on the 7th axial slice
at different time frames. The slice location is shown as the 7th line from top in
Fig. 7.16(b). The x, y and z axis are as defined in Fig. 7.16.
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the meantime, the tongue tip moves backward and the tongue muscle contracts in

the anterior-posterior position. When the tongue is pushed against the palate, it

expands in the lateral direction to preserve the volume. When transiting to “oo”, the

tongue relaxes and lower, and is positioned close to its rest position. Therefore in

the transition, the tongue appears to be expanding in the anterior-posterior direction,

shortening in the head-foot direction, and also shortening a little in the lateral direc-

tion. The tongue also shortens more laterally on the two sides than in the middle.

The possible reason for this is that because of the arched shape of the palate, during

“ee” the tongue is squeezed from the top more on the sides and as a result it expands

more on the side. Hence during the transition it shortens laterally more on the sides

of the tongue. This also explains why the middle of the tongue shortens more in the

head-foot (z) direction.

7.4.5 Computation

The computation of DFVS involves the inversion of a (N + 11) × (N + 11) ma-

trix (see Eqns. (7.5) and (7.7)) with N being the number of data samples, and its

complexity is O(N3). Because of the large number of sample points from the HARP

processing of tagged MR images, this matrix inversion dominates the computation of

our method. For example, in the cardiac experiment, the number of samples varied

from 21,585 to 22,492 at different time frames. In our implementation, 20 integration

steps was adopted with three levels of subsampling of the data samples with sample
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rates of 4, 2, and 1 respectively. Our algorithm was implemented in Matlab (Math-

works, Natick MA) and run on a server with 4 x 3.57 GHz processors and 32 GB

RAM. In our implementation, the proposed method took about 50 minutes to recon-

struct the displacement field at one time frame, while Bistoquet’s method took about

25 minutes.

The computation time should not pose serious limitation for scientific study with

fairly small number of data sets. For clinical use and the processing of large number

of data sets, It is possible to reduce the computation time by optimizing our imple-

mentation, including the adoption of optimized matrix inversion algorithm, parallel

computing, and so on.

7.5 Discussion

7.5.1 Choices of Kernel Matrix

The DFVS uses a kernel matrix with infinite support to interpolate divergence-free

velocity field. There are some other works that have used different kernel matrices to

interpolate or approximate divergence-free vector fields. Narcowich and Ward [103]

developed the generalized Hermite interpolation using the divergence-free kernel ma-

trix generated from Gaussian function φc(x) = e−c||x||2 ∈ C∞. The kernel matrix

has the same form of Eqn. (7.9) except the function h(x) is replaced by Gaussian
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function, i.e.,

KG(x) =
[

△I −∇∇T
]

φc(x) =
[

(4α − 4α2||x||2)I + 4α2xxT
]

e−α||x||2 . (7.22)

This kernel matrix was used in the nearly incompressible model in Bistoquet et al. [94].

Another class of divergence-free kernel functions are derived from the compactly-

supported Wendland functions [104]. Lowitzsch [105] applied it to certain incom-

pressible fluid flows.

Comparing with the DFVS kernel, these kernel functions have higher order of

smoothness, and have either compact support (Wendland functions) or values de-

creasing quickly with x (Gaussian functions). So the computation of spline coeffi-

cients can be more efficient because the matrix K in Eqns. (7.5) and (7.7) is more

sparse. A downside is that they require careful parameter tuning. The parameters

(α in the Gaussian function and the size of support in Wendland functions) greatly

affect the interpolation results, and need to be carefully selected.

In addition, in the implementation we have found that, although for both Gaussian-

based kernel and Wendland-based kernel the matrix K is theoretically positive defi-

nite, when the number of samples is large K can be close to singular to the working

precision of computer and cannot be inverted. This is especially a problem for our

application since the number of data samples is usually large (∼20,000 samples). A

way to get around is to use a large support (in Wendland functions) or a small α (in

Gaussian function), but it will affect the accuracy of the interpolation.
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7.5.2 A Large Deformation Diffeomorphism Ap-

proach

In our method, the strategy of estimating velocity fields at discrete time steps

and integrating them together to reconstruct the displacement field is similar to that

in landmark matching via large deformation diffeomorphism (LMLDD) [106]. Both

methods compute the deformation (displacement) fields by integrating the velocity

fields computed at discrete time steps based on the knowledge of displacements at

sample points (in our approach) or matched landmarks (in LMLDD). The main dif-

ference is that LMLDD seeks smooth trajectories over time by directly constraining

the temporal smoothness of velocity fields. In the appendix of the chapter, we ex-

tend LMLDD to incompressible motion reconstruction and demonstrate it using a 2D

example, and call it iLMLDD.

ILMLDD appears to be a good solution in our application of estimating incom-

pressible motion from tagged MRI. However, it is not feasible because of the unafford-

able computation. LMLDD requires very expensive computation because it involves

iteratively inverting N ×N matrices, which has the complexity of O(N3) with N be-

ing the number of landmarks. Typically it takes several hours for LMLDD to run on

several hundred landmarks. In our case of tagged MRI, it is common to have about

20,000 sample points or more. Therefore directly applying iLMLDD on the data may

take weeks or months to run, which is not realistic.
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7.6 Summary

In this chapter, we presented an approach to reconstruct a 3D, dense, incompress-

ible displacement field from tagged MR images. Our method uses a divergence-free

vector spline on incomplete and non-uniform sample data to interpolate velocity fields

at discrete integration steps, and the displacement field is achieved by integrating

these velocity fields. Comparing to previous methods, our method does not assume

small deformations, and the reconstruction of displacement field at one time frame

does not rely on the results from earlier time frames. Hence it prevents error accumu-

lation arising from inaccurate estimation at earlier time frames caused by the small

deformation assumption. Our method was validated with both numerical simulation

and in vivo experiments. Our method has been successfully applied to reconstruct

both the tongue motion during speech and the motion of the left ventricle of human

heart.

Appendix — LMLDD for Incompressible

Motion Reconstruction

LMLDD for Incompressible Motion

LMLDD [106] solves the large deformation landmark matching problem by reduc-

ing it to the small deformation landmark matching problem. For this, it computes the
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curved trajectories through the integration of velocities instead of directly mapping

the landmarks. This is achieved by minimizing an energy function defined on the

velocity fields over time (in an interval of [0, 1]), i.e.,

v̂(x, t) = arg min
v(x,t)

∫ 1

0

∫

R3

||Lv(x, s)||2dxdt , (7.23)

where L is a differential operator. Eqn. (7.23) can be theoretically solved by finding

its Euler-Lagrangian equation, and numerically solved by iteratively computing the

velocity fields on a finite number of time steps.

We demonstrate LMLDD using a simple 2D example (similar to the example in

Joshi et al. [106] and the example in Section 7.4.1) and show it in Fig. 7.26. There

are 6 landmarks which include the four corner points of the region, and two points in

the middle (points A and B in Fig. 7.26(a)). The four corner points are fixed, and

the two points A and B deform to C and D, respectively (Fig. 7.26(a)). We then

reconstructed the deformation field using LMLDD with exponential kernel function:

Kg(x) = e−
√

(c)||x||I . (7.24)

The trajectories of the landmarks over time are shown as red lines in Figs. 7.26(a) and

(b). By reconstructing velocity fields at 10 discrete time steps and integrating these

velocity fields, LMLDD successfully reconstructs a smooth diffeomorphic deformation

field with correct topology, as shown in Figs. 7.26(c) and (d).

In the energy function of standard LMLDD, the differential operator L is diagonal,

and the different components of the deformation field are considered separately. To
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A 

B 

C 

D 

(a) (b)

(c) (d)

Figure 7.26: A 2D example of LMLDD. (a) The locations of landmarks and their tra-
jectories computed using LMLDD (red lines). (b) The trajectories of landmarks over
time displayed by adding the temporal axis to (a). The reconstructed 2D deformation
field is represented with (c) deformed mesh and (d) vector flow respectively.

reconstruct incompressible tissue motion, we formulate the incompressible LMLDD

(iLMLDD) landmark matching problem by enforcing the divergence-free condition,
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i.e.,

v̂(x, t) = arg min
v(x,t)

JDF(v) =

∫ 1

0

∫

R3

3
∑

i=1

||∇k(rotv(x))i||2dx , (7.25)

subject to: divv(x) = 0, and u(xn) = un, n = 1, 2, ..., N.

with u(x) = w(x, 1), and w is defined as in Eqn. (7.17). This can be solved in a

similar way as in LMLDD [106] except the velocity at each time step is interpolated

using DFVS.

We have applied iLMLDD on the same 2D example, and the results are shown in

Fig. 7.27. Because of the incompressible constraint, the trajectories of the two land-

marks in the center of the grid are more curved to preserve volume (Fig. 7.27(a)).

The areas of all the cells on the grid are preserved so that they are equal (Fig. 7.27(c))

while in LMLDD (Fig. 7.26(c)), the cell areas are not preserved. The resulting de-

formation field of iLMLDD is shown in Fig. 7.27. As a preliminary work, we have

successfully applied iLMLDD to 2D landmark-based prostate image matching [107].

ILMLDD (and LMLDD) can also be extended to matching incomplete data sam-

ples to be used in our application. Its solution is similar to LMLDD except the

kernel matrix is projected in the same way as in DFVS from incomplete samples (see

Eqn. (7.13)).
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(a) (b)

(c) (d)

Figure 7.27: The result of iLMLDD on the same example as in Fig. 7.26. (a) The
locations of landmarks and their trajectories computed using incompressible LMLDD
(red lines). (b) The trajectories of landmarks over time displayed by adding the
temporal axis to (a). The reconstructed 2D deformation field is represented with (c)
deformed mesh and (d) vector flow respectively.
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Chapter 8

Internal Tongue Motion Analysis

on Glossectomy Patients:

Preliminary Studies

8.1 Introduction

Glossectomy is a surgery that removes part or all of the tongue, and is an effective

treatment for tongue cancer. It affects the patient’s speech quality because of the

changes in the motion of the post surgical tongue. In order to better interpret clinical

observations and to provide data that can help predict optimal surgical outcomes,

we need a better understanding of the tongue motion patterns and the underlying

mechanisms of tongue muscles in glossectomy patients through careful comparison
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with those in normal speakers.

One of the main factors that determine the effectiveness of tongue motion is the

size of the residual tongue left after removal of the tumor [108,109]. For fairly small

tumors, variations in surgical closure procedure may affect tongue motion, including

prime closure and free flap reconstruction. It is uncertain which of these methods

produces better speech quality [109,110]. The muscle mass is reduced in glossectomy,

and this results in a reduction of muscle force and the need of additional supporting

muscles. Free flap reconstruction adds dead weight to the remaining muscle tissue, but

may provide mass for improved vocal tract shaping for speech. In addition, scar tissue

may affect the tongue motion because it adds regions of rigidity. These effects together

contribute to unclear speech after surgery. Even in cases where speech is unaffected,

these two procedures are likely to create different motion patterns. Therefore it is

required to have a better understanding of the different motion pattern of the patients

with different closure procedures via comparison with normal speakers.

Tongue motion is produced through muscle activation. It has been observed

that glossectomy patients tend to compensate for the morphological changes of their

tongues in different ways and to different degrees. For example, the patients may

move their tongue more laterally than normal speakers in order to compensate for

the missing parts of the tongue on one side. In order to assist surgeons in planning and

evaluating the surgery, it is desirable to understand the biomechanical and muscular

mechanisms underlying the compensatory tongue motion.

177



In this work we performed two preliminary studies of the the tongue motion pat-

tern and muscle mechanisms of glossectomy patients, and compared them to normal

speakers. The studies were carried out at University of Maryland Medical and Dental

School. Dr. Maureen Stone led and designed the studies, and performed the scientific

analysis. My work provided technological support in image processing and data anal-

ysis in these studies. In the muscle mechanism study, Dr. Hideo Shinagawa extracted

the muscle fiber and located them in the DTI data of the tongue. Dr. Rao Gullapalli

and Ms. Jiachen Zhuo contributed in data collection. Dr. Emi Murano provided

most of the “asouk” data sets and provided valuable advices.

The chapter is organized as follows. Section 8.2 describes a statistical analysis of

internal tongue motion of normal and glossectomy speakers using principal compo-

nent analysis (PCA) to discover their relationships. In Section 8.3, we analyze the

mechanical property of inferior longitudinal muscle (IL) by combining knowledge from

tagged MRI, high resolution MRI and diffusion tensor imaging. Section 8.4 provides

a disscussion, and Section 8.5 summarizes the chapter.

8.2 Statistical Analysis of Internal Tongue

Velocity Field

In this work, we focus on the statistical analysis of the motion patterns of internal

tongue using principal component analysis (PCA). PCA is an excellent method to
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extract and represent patterns in high-dimensional data for which no expectations or

model is available. PCA has a wide range of applications in image analysis, includ-

ing shape modelling (active shape model [111] and active appearance model [112]),

predicting “average images” in a database [113], retrieving dominant modes for fast

imaging [114], and so on. It has also been applied on motion or deformation field

analysis; for example, it has been used to build an atlas of cardiac motion [115] and

to study shape variations in the normal brain [116].

In speech research, PCA has been successfully applied to representing the tongue

surface shape [117–120]. These studies discovered the main variance in vowel tongue

shapes in both American English and other languages. Bressman et al. [121] studied

the tongue surface shapes of glossectomy patients using PCA and 3D ultrasound, and

discovered some statistical differences between patients with and without a flap.

In this preliminary study, we used PCA to examine the motion patterns of the

internal muscle movements of the tongue instead of just the surface. The study

compares the motion of 5 normal speakers and 5 patients saying “asouk”. For each

subjects, the velocity field of the mid-sagittal section of the tongue during the ele-

vation of the tongue body was computed from tagged MR images. PCA was then

performed on these velocity fields to quantitatively characterize their different motion

patterns.
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8.2.1 Method

8.2.1.1 Image Acquisition and Processing

We acquired both cine MR images and tagged cine-MR images on 10 subjects. For

the same subject, both cine MRI and tagged MRI were acquired on a midsagittal plane

with the same spatial resolution and temporal resolution on the same slice location so

that the images were automatically registered. Both cine MRI and tagged MRI were

acquired with a 6 mm slice thickness and 1.975 mm in-plane resolution. For tagged

images, two CSPAMM image sequences in two tag orientations were acquired. The

speech repetitions of the subjects were synchronized using the special MR triggering

system described in Chapter 5.

All 10 subjects were native American English speakers. Five of them were nor-

mal controls (4 male, 1 female) and 5 were glossectomy patients (4 male, 1 female).

Among the patients, one male had a flap reconstruction and the others had primary

closure. The subjects all repeated the word “asouk” except one normal subject re-

peated “desouk”. These words were chosen because (1) they are short so they can

be easily repeated and imaged in an MRI scanner, (2) they maximize tongue defor-

mation by engaging the jaw very little, and (3) they cover a large range of tongue

positions and shapes and they contain a range of difficulties for glossectomy patients.

We examined the velocity field at the onset of motion from “u” to “k”, which was

determined via visual inspection of the velocity patterns of the tongue. The velocity
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fields were computed from tagged MR images using HARP [39,40].

8.2.1.2 Data Pre-Processing: Alignment of Tongue Regions

The tongue regions from different subjects must be aligned before performing

PCA. For this the tongue region in each data set is manually identified using nine

landmark points from the cine images, as shown in Fig. 8.1(a). These points mark:

the base of the valleculae, the upper tip of the eipglottis (projected on the tongue

surface), the point on the tongue surface that lies between the elbow of the velum

and the lower edge of the mandible, the mid palate, the tongue tip, the origin of

genioglossus, and several additional points equidistant between these landmarks. We

denote the ith landmark on the jth subject as Pij. The tongue region of each subject

was defined as the area inside the polygon by connecting these landmarks.

The tongue regions in all subjects were registered using rigid transformation plus

a global scaling computed from manually picked landmark points. Without loss

generality, we picked the first data set as the reference coordinate to which all the

other data sets are registered. The jth data set was registered to the reference by

computing the transformation [sj,Rj, tj] that minimizes

Ej =

9
∑

i=1

(Pi1 − (sjRjPij + tj)) . (8.1)

The registered landmark points are illustrated in Fig. 8.1(b). The common region of

the registered tongues were then determined (the white area in Fig. 8.1(b)), and we

denote it as C.
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(a) (b)

Figure 8.1: (a) The landmark points used to align the tongues. (b) The registered
landmarks.

Next, we must transform the velocity field inside the common region of each

dataset to the reference coordinate. This was accomplished in three steps. For each

point (pixel) pk ∈ C and the jth subject, (1) compute its location pkj in the jth

dataset by applying inverse transform, i.e., pkj = s−1
j RT (pk − tj); (2) compute the

velocity v(pkj) = [u(pkj), v(pkj)]
T at point pkj using HARP and linear interpolation;

(3) transform the velocity back to the reference coordinate using v
(j)
k = [u

(j)
k , v

(j)
k ]T =

sjRjv(pkj). These steps were executed for every pixel in ∈ C and every dataset.

8.2.1.3 Principal Component Analysis

After the tongue shapes and velocity fields were aligned, we performed PCA on

the normal subjects and quantify the component motions of the midsagittal velocity
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patterns. We then determined how well the motion patterns of the patients can be

explained by the PCA of normal subjects.

Suppose there are N normal subjects, and M points in the common region.

The velocity field of the jth subject can be represented as a 2M × 1 vector Vj =

[u
(j)
1 , ...u

(j)
M , v

(j)
1 , ...v

(j)
M ]T . Through PCA, the data from any subject can be represented

using a linear model

V = V + Φb , (8.2)

where V is the average velocity field for all the subjects

V =
1

N

N
∑

j=1

Vj . (8.3)

The columns of matrix Φ represent the modes of variation of the velocity fields,

and are called principal components (PCs). They are computed from the 2M × 2M

covariance matrix S, given by

S =
1

N

N
∑

j=1

(Vj − V)(Vj − V)T . (8.4)

The PCs are the eigenvectors φi of S with corresponding eigenvalues λi sorted so that

λi ≥ λi+1. The PC corresponding to the largest eigenvalue, i.e., φ1 represents the

direction of maximum variability in the velocity fields across the subjects.

To interpret the patient motion using normal subjects, each patient data Vp was

fitted to the normal PC’s by finding the coefficient vector bp that minimizes the

residue

E = ||V + Φbp − Vp|| . (8.5)
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1 2 3

4 5

Figure 8.2: The velocity fields of 5 normal subjects at the “k” onset.

The residue represents the motion pattern of the patient that cannot be represented

by the normal subjects, while bp represents the amount of motion patterns that are

represented by the corresponding PCs.
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8.2.2 Results

The velocity fields of the 5 normal subjects after alignment are shown in Fig. 8.2.

We can see there was a large amount of variability in the normal subjects. This

indicated that there were a number of strategies of tongue motion to produce “k”

sound from “u”.

The PCA of the 5 normal subjects produced 4 PCs, and they were shown in

Fig. 8.3. The eigenvalues corresponding to the 4 PCs were 372.24, 157.05, 39.27,

and 11.03, respectively, and it indicated that PCs 1 and 2 accounted for most of

the variance. From Fig. 8.3 it can be seen that PC1 represented primarily anterior-

posterior motion, and PC2 mainly represented vertical motion.

Fig. 8.4 shows the velocity fields generated by adding PC1 and PC2 to the mean

velocity. Panel 2 and 8 show the mean minus and plus one standard deviation (square

root of λ1 of PC1) respectively, and panel 4 and 6 show the mean minus and plus one

standard deviation of PC2 respectively. The four corner panels show the addition of

mean with both PC1 and PC2.

Fig. 8.5 shows the velocity vector fields at the time of “k”-onset for the 5 patients.

Four patients’ motions were very well explained by the first 2 PCs. For Patient 1,

PC1 represented 61% and PC2 26% of the motion variance. PCs 3 and 4 were less

than 1% each. For Patient 2, 88% of the motion variance was accounted for by PC1

and the other 3 PCs explained less than 1% each of the variance. It can be seen from

Fig. 8.5 that the patient moved the tongue straight backward and upward. Patient 3
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+PC1 +PC2 +PC3 +PC4

-PC1 -PC2 -PC3 -PC4

Figure 8.3: The PCs computed from 5 normal subjects.

also was fairly well explained by PC1 (44%) and PC2 (33%). Patient 4‘s motion was

explained almost entirely by PC2 which accounted for 70% of the variance, while PC1

explained 13%. PC 4 also explained 5%. Patient 5 had 7% of his variance explained

by PC1, none by PC2, 44% explained by PC3 and 5% by PC4.
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Figure 8.4: The mean velocity field and +/1 standard deviation of PC1 and PC2.
The center image shows the mean velocity field. The others show the addition of
mean and -/+1 standard deviation of PC1 and/or PC2.
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1 2 3

4 5

Figure 8.5: The velocity fields of the five glossectomy patients at the “k”-onset.
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8.3 Tongue Muscle Mechanics

8.3.1 Introduction

In this work, we studied the mechanical property of tongue muscle during speech.

We examined the motions of the inferior longitudinal muscle (IL), which is often cut

during glossectomy surgery, of a normal speaker and of a glossectomy patient with

a radial forearm free flap (RFFF), and analyzed whether the difference of tongue

motion after surgery could be explained by the changes in muscle mechanics.

We combined knowledge from tagged MRI and diffusion tensor imaging (DTI) to

compute the motion of IL muscle fiber. DTI captures muscle fiber orientation by imag-

ing the orientation-dependent diffusion process that are associated with fibers [122],

and the dominant orientation of the diffusion tensor represents the orientation of a

muscle fiber passing through the voxel of interest. In speech research, DTI was ini-

tially used to image excised tissues (for example, porcine tongue [123]), but now in

vivo human imaging in the resting state is possible [124,125]. DTI can only image the

tongue in stationary position and not in a temporal sequence as would be required in

speech.

In this preliminary study, both tagged MRI and DTI images were acquired on

the same subject. We then extracted the muscle fiber from DTI and registered it

with tagged MRI data, so that the muscle fiber can be tracked using HARP methods.

Finally the tracked muscle deformations were represented using mechanical measure-
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ments, and they were compared between normal and patient subjects.

8.3.2 Method

8.3.2.1 Data Acquisition and Processing

Images were acquired on a Siemens 3T MR scanner for a normal subject and a

patient. The patient has a radial forearm free flap, a piece of skin tissue that was

resculpted, vascularized and inserted to replace the missing tongue tissue. For each

subject, DTI images were acquired with diffusion weighting along 6 directions, and

a b-value of 500 s/mm2. Other imaging parameters are: FOV=200 mm × 200 mm,

slice thickness=3 mm, TR=5,000 ms, TE=66 ms, in plane resolution=3.1 mm, tem-

poral resolution=37.5 mm. The resolution of tagged cine MRI and cine MRI was all

1.875 mm, and slice thickness was 6 mm. In the DTI acquisition, the tongue was

held still in a rest position. In cine MRI and tagged MRI acquisitions, the subjects

repeated each speech task multiple times and were synchronized using a specialized

trigging system. For visualization purpose we also acquired high resolution MRI in a

rest position. Fig. 8.6 shows the high resolution images of the patient.

The 3D location of fiber bundles within the inferior longitudinal (IL) muscle was

identified using DTI data. We only look at IL at one side of the tongue, i.e., the side

that was preserved for the patient. Since IL is often cut during glossectomy surgery

even in partial resections, the muscle on the intact side has no pair to work with
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Sagittal Coronal Axial

Figure 8.6: High resolution images of the patient tongue in three planes. The flap
has high intensity in the images and its position is illustrated by the circles.

and must create new motion patterns. DTI data was acquired on axial planes and

reconstructed into 3D volume so that it can be re-sliced in any direction. The location

of IL in the tongue was first estimated from known anatomy and visually identified

on the high resolution MRI. The muscle fiber bundles were then extracted through

DTI data analysis and tractography. The fiber bundle locations and orientations for

both normal and patient speakers are shown in Fig. 8.7.

After IL muscle bundles were estimated, an average fiber for IL was extracted in

the intact side for both subjects. This fiber was overlaid on the tagged MRI data in

order to track its motion during the word “asouk”. The fiber was overlaid onto the

sagittal tagged MRI plane most closely corresponding to the fiber plane in the DTI

data. The fiber was then automatically tracked through all time frames using HARP

processing and HARP tracking.
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(a) Normal (b) Patient

Figure 8.7: IL muscle fiber (green) estimated from DTI images of (a) the normal
speaker and (b)the patient. The tongue is outlined in yellow, the pharynx is circled
in red, and the mandibular bones are tracked in red.

8.3.2.2 Muscle Mechanics

We computed the changes of biomechanical properties of the muscle fiber be-

tween the first time frame and later time frames, and compared the patient with the

normal subject. The compared properties include global rigid motion (rotation and

translation), change in fiber length, and bending energy.

We used the bending energy model proposed by Duncan et al. [126] to quanti-

tatively measure the shape change of the tongue muscle fiber. The bending energy

model was originally proposed to measure the deformation of cardiac shape, and it

measures the bending on a thin straight rod. It is assumed that the cross section of

the rod is circular and the inertias in all directions are the same. We denote s be the

length along the rod starting from one end point, and the total length of the rod is
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S. The equation for its elastic energy after bending is

Eabs =
1

2
EI

∫ S

0

1

R(s)2
ds , (8.6)

where R(s) is the radius of curvature after bending, E is the Young’s modulus, I is

the inertia, and the integral is taken over the entire length of the rod. Here we assume

E and I are constant, and so can be ignored from the equation. We call this measure

the absolute bending energy. Because the muscle fiber is not straight even at the rest

position, we measure its deformation using relative bending energy, which models the

shape change of an arbitrarily-shaped thin flexible rod. The relative bending energy

is expressed as

Erel =
1

2

∫ S

0

(

1

Rt(s)
− 1

R0(s)

)2

ds , (8.7)

where Rt(s) and R0(s) are the radii of curvature of the deformed and undeformed

muscle fiber respectively. A nice property of the bending energy is that it is invariant

to rigid transformation. Therefore it can measure the shape change of the fiber

regardless of its location and orientation.

8.3.3 Results

8.3.3.1 Fiber Position and Elongation

Tables 8.1 and 8.2 present the mechanical changes in the IL fiber of the normal

speaker and the patient speaker during some time-frames of “asouk”. The times at

which each speech sound occurred (column 2) were determined by examining the
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Time

Frame
Sound

x translation

(mm)

y translation

(mm)

Rotation

(degree)
Elongation

1 0 0 0 0

3 start “s” 2.4 -0.8 0.5 5.1%

4 max “s” 2.4 -0.9 -1.3 0.5%

8 2.4 -0.1 -20.2 1.9%

11 “u” 2.7 -0.1 -20.2 -2.7%

14 “k” palate 3.3 -0.3 -18.1 -9.7%

15 “k” velum 3.3 -0.4 -19.0 -10.3%

Table 8.1: Mechanical changes in IL fiber for the normal subject.

tongue surface motion from cine MRI data. The patient started moving the tongue

from the third time frame while the normal speaker started from the first time frame.

The translation and rotation values represent the global motion of the fiber and the

elongation represents the change of fiber length from the first time frame. x is in the

posterior-anterior direction, and y is in the head-foot direction. The x translation

shows that both subjects moved IL muscle forward into the “s”. The normal subject

then moved it backwards, whereas the patient moved it back then forward into “k”.

The y translation shows that the fiber moved down into “s” and then upward into

“u” for both subjects. Again the patient moved downward at the end, unlike the
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Time

Frame
Sound

x translation

(mm)

y translation

(mm)

Rotation

(degree)
Elongation

3 0 0 0 0

10 start “s” 3.4 -0.7 -5.3 18.9%

14 max “s” 2.8 -0.2 -9.1 17.3%

16 2.4 0.1 -6.2 14.1%

18 “u” 1.9 0.4 -4.0 7.0%

20 “k” palate 1.7 0.5 -3.3 3.3%

21 “k” velum 1.6 0.4 -1.6 5.0%

Table 8.2: Mechanical changes in IL fiber for the patient.

normal subject. The rotation shows backward rotation occurred for both subjects,

with considerably less rotation for the patient. In addition the patient’s muscle fiber

elongated more into the “s” and more shortening thereafter, even though he never

shortened to resting length (time frame 1).

8.3.3.2 Fiber Shape and Bending Energy

Fig. 8.8 shows the overlaid position and shapes for the IL fibers at all time frames.

Note for the patient two time frames were mistracked (11 and 12) because of the image

quality was poor. Therefore these two time frames should not be considered for
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comparison. The IL fiber shape is slight convex for the normal subject, and concave

for the patient. The bending energy for the two subjects are shown in Fig. 8.9. In the

figure, the mistracked time frames of the patient, 11 and 12, have been omitted. The

blue line indicates a change in bending relative to the first time frame. The red line

indicates a change in bending relative to a straight line. The fiber shape at the rest

position for the patient is closer to a straight line than the normal subject. Therefore

the absolute and relative bending energies of the patients are close. From the figures

we can observe the different bending patterns of IL fiber during speech. The normal

subject’s largest bends occur during “k” (time frame 14), the sound with the highest

tongue body, and the subsequent inhalation (time frame 17). For the patient, the

largest bends occur during “u” and “k”, and also “s”. As bending increases, the fiber

of the normal subject becomes more convex, and that of the patient becomes more

concave.

8.4 Discusion

In the PCA study, we studied the statistical property of velocity fields in the

onset of the motion from “u” to “k” on five normal subjects using PCA, and tried to

explain the glossectomy patients’ motion using the PCs. While the PCs computed

from the 5 subjects appear to be physiologically meaningful and might reasonably be

made by the tongue muscles, the observations from such a small number of datasets
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(a) Normal (b) Patient

Figure 8.8: Overlay of IL muscle positions at all time frames during the utterance
“asouk” for (a) the normal speaker and (b) the patient.
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Figure 8.9: The absolute and relative bending energy of the IL fiber over time for (a)
the normal speaker and (b) the patient.

may potentially be biased and not conclusive. More datasets are needed to achieve

more statistically persuasive observations.

In the PCA study the time frame of the examined velocity field was picked manu-
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ally via visual inspection through all the time frames, and the velocity at each point

was estimated as the displacement from previous time frame. Though the speech rep-

etitions were synchronized using a specialized timing device, the subjects may vary

on the response time to the signal. Therefore the actual time of the velocity may be

biased by up to the temporal resolution of the image acquisition. In addition, the ve-

locity may be computed over different time interval because the temporal separations

between time frames in different image acquisitions were not the same. To better

align the subjects in time, we may interpolate the tongue motion in time through the

image sequences. Hence, the subjects can be aligned not only spatially but also tem-

porally so that the velocity at the interested time can be determined more accurately.

Moreover, the temporal alignment of velocities also allows analysis of motion patterns

through the whole utterance, which may produces more interesting and meaningful

insight into the motion pattern changes of the patients after different surgical closure

procedures.

In the PCA study the tongue regions were aligned using a rigid transformation

plus a global scaling. This transformation assumes that the tongue shapes of different

people are similar while the size is different. This simplifies the problem while still

preserving important features of the tongue. The results should be improved using

deformation registration to align different tongue regions so as to accommodate dif-

ferent tongue shapes. In this case, the velocity fields need to be transformed by the

resulting deformation field using methods similar to Alexander et al. [127,128] or Cao
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et al. [129].

This muscle mechanics study has observed notable differences of the IL muscle

deformation during speech through comparison on the muscle mechanical properties

of a glossectomy patient and a normal speaker. As a preliminary study, this work

shows promising results. Studies on more data is required to achieve more conclusive

observations for precise scientific study.

In the muscle mechanics study, the IL muscle from DTI was aligned with tagged

MR by projecting it onto a sagittal image plane. The IL fiber is a 3D structure moving

in 3D. It general does not align with any of sagittal, coronal, or axial planes on which

the tagged MR images are acquired, although its orientation is approximately parallel

to the sagittal plane. Therefore the 2D projection may cause a considerable amount

of error in this study. In addition, fiber motion is also assumed to be 2D, i.e., inside

the sagittal plane. Although this assumption is reasonable because the tongue has

minimal lateral motion, it is not accurate. Better results are expected when extending

this work to 3D.

8.5 Summary

In this chapter, we described preliminary studies on tongue velocity field analysis

and muscle mechanical properties during speech, and discovered that the motion

pattern of glossectomy patients was notably different comparing with normal speakers.
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In the first study, we applied principal component analysis on the tongue velocity field

during speech and compared the statistical differences between normal and patients

speakers. We also studied the mechanics of IL muscle fiber by evaluating its global

motion, elongation, and bending during speech. Our studies have shown interesting

and promising preliminary results.
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Chapter 9

Conclusions and Future Work

This dissertation focused on three-dimensional muscle motion reconstruction and

analysis from tagged MR images. We concentrated on tongue motion imaging, and

also worked on cardiac motion imaging. In Chapters 3 and 4, we first developed

2D HARP tracking refinement methods to prevent the mistracking in the traditional

HARP method. These methods can reliably track every tissue point in 2D in tagged

MR images. In Chapter 5, we measured the 3D tongue motion during speech by

optimizing the zHARP method for tongue imaging, and developed a specialized MR

triggering and vocal repetition method to reduce motion artifacts. In Chapter 6 we

extended the 3D-HARP method in 3D cardiac motion tracking and developed the

thin plate spline based 3D tongue motion tracking method to track the 3D tongue

motion based on the 2D HARP method on tagged MRI. In Chapter 7, we developed

a method to reconstruct 3D, dense, incompressible motion from tagged MR images
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using divergence-free vector spline, and applied it to both the heart and the tongue.

We also performed preliminary studies on the internal tongue motion on glossectomy

patients and compared them with normal speakers, and showed them in Chapter 8.

In this chapter, we summarize the key results and future research directions.

9.1 HARP Tracking Refinement

In Chapters 3 and 4, we described two HARP tracking refinement methods, region

growing HARP refinement (RG-HR) and shortest path HARP refinement (SP-HR),

for robust and reliable estimation of 2D motion from tagged MRI. These methods

solve the mistracking problems in traditional HARP. Both methods start with a

manually specified seed point that can be correctly tracked using traditional HARP

tracking then carry out a region-growing process to recursively track all the points

in the tissue. The RG-HR method tracks the tissue points in an order based on the

local HARP phase smoothness, and may fail because points can be connected to the

seed through erratic paths. To improve this, the SP-HR method explicitly resolves

the optimal paths that connect tissue points to the seed by formulating a single

source shortest path problem, and thus provides more robust and reliable tracking

results. We have successfully applied these methods to both cardiac and tongue

motion tracking.
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9.1.1 Main Results

• Mistracking in 2D HARP is mainly caused by three reasons: large motion be-

tween successive time frames, through-plane motion, points close to the tissue

boundary.

• The RG-HR method was applied to tongue motion tracking, and it successfully

prevented mistracking in case of large tongue motion, and led to improved

Lagrangian strain calculation.

• The SP-HR method was compared to traditional HARP tracking in cardiac

motion tracking, and it performed better on all 18 sectors of the left ventri-

cle, especially in the epicardium and endocardium. WIth decreased temporal

resolution, the ratio of corrected tracked points with SP-HR was 98.4%, while

traditional HARP was as low as 58.7%.

• In cardiac motion tracking, SP-HR was more robust than RG-HR with a success

rate of 99.5% as compared to that of 93.8% in RG-HR.

• The two-step tracking strategy was adopted when tracking through a temporal

sequence of images, and was shown to be more robust to through-plane motion

than tracking through successive time frames.
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9.1.2 Future Work

HARP refinement can be viewed as a implicit harmonic phase unwrapping process.

In the future we want to investigate other phase unwrapping algorithms and adapt

them to refine HARP tracking. It is also of interest to extend the proposed methods

to other phase unwrapping problem and other applications, e.g., DENSE images and

phase images generated with Gabor filter banks.

9.2 Measurement of 3D Tongue Motion

Using zHARP

In Chapter 5, we measured 3D tongue motion during speech using zHARP. We re-

implemented the zHARP sequence using a gradient echo sequence and optimized the

image parameters for tongue imaging. We also used a specialized MR triggering and

vocal repetition method to reduce motion artifacts. The sequence and the triggering

system have been successfully applied to 3D tongue motion measurement and strain

analysis.

9.2.1 Main Results

• We have successfully re-implemented and optimized zHARP for measuring 3D

tongue motion, and validated it using a phantom experiment.
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• Motion artifacts caused by inconsistent repetitions are the major factors that

affect the zHARP image quality in tongue imaging. They are much more severe

in zHARP than in standard tagging, and more severe in later time frames.

To reduce motion artifacts, images are best acquired in the sagittal planes to

minimize motion artifacts.

• We successfully performed in vivo experiments on normal speakers with opti-

mized parameters. Each zHARP image was acquired in 4 vocal repetitions in

each of the two tag directions, with an acquired k-space matrix size of 64× 22,

a temporal resolution of 52 msec, and a z-encoding period of 30 mm.

• We have computed 3D strain tensor based on the 3D tongue motion computed

from zHARP images.

9.2.2 Future Work

• In patient studies, motion artifacts remains a major factor that lowers the

zHARP image quality because the patients’ tongue motion is not very con-

sistent. Future investigation is needed to try to further suppress motion arti-

facts by reducing the number of vocal repetitions in zHARP imaging using fast

imaging techniques such as EPI and parallel imaging.

• In our current implementation, the temporal resolution was compromised to

reduce the number of repetitions required for each image. Future work is desired
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to improve the temporal resolution of tongue imaging using view sharing [130].

• ZHARP made it possible to directly compute the 3D strain map for tongue

functional analysis from two parallel slices. More experiments are needed to

better understand the correlation between the strain map and tongue functions.

This is part of our future work.

9.3 3D Tongue Motion Tracking

In Chapter 6, we developed the thin plate spline based 3D motion tracking for

tongue imaging by extending the 3D-HARP method for 3D cardiac motion tracking.

The method tracks a rectangular mesh placed inside the tongue in an iterative fashion.

In each iteration, the method first computes the intersection points between the mesh

and image planes and estimates the 2D or 1D components of the 3D motion of these

points using 2D HARP tracking, then the 3D motion of the whole mesh is interpolated

using a thin plate spline.

9.3.1 Main Results

• We successfully applied the method on a normal speaker during the speech of

“deGoose”. The tracked 3D motion was visually assessed by acquiring images

with tag planes parallel to the meshes, and it was observed that the meshes

conformed to the deformation of the tag lines at all time frames.
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• By placing two parallel meshes closely together inside the tongue and tracking

them in 3D, we were able to compute the 3D Lagrangian strain from the tracking

results.

9.3.2 Future Work

The method is sensitive to incorrect 2D tracking results of points on the mesh.

Future work is needed to improve the robustness of the method. Future work also

includes the investigation on extending the method to the 3D motion on the whole

tongue volume.

9.4 3D Incompressible Motion Reconstruc-

tion

In Chapter 7, we presented an approach to reconstruct a 3D, dense, incompressible

displacement field from tagged MR images. Based on the incomplete and sparse data

computed from tagged MRI, our method uses a smoothing divergence-free vector

spline on incomplete data samples to interpolate the velocity fields at discrete time

steps, and then integrates these velocity fields to find the incompressible displacement

field. The displacement fields at different time frames are reconstructed separately to

prevent error accumulation arising from inaccurate estimation at earlier time frames.

207



9.4.1 Main Results

• We demonstrated our method using a simple 2D example, and compared it

with TPS interpolation, DFVS interpolation, and Bisotquet’s method. The

deformation field reconstructed using our method was incompressible with neg-

ligible error from discretization, while the deformation fields from the other

three methods were not incompressible.

• Our method was validated using a cardiac motion simulator and compared to

Bistoquet’s method. Over the simulated 16 frames, the rms error of the recon-

structed displacement field in our method was no more than 0.03 mm, while

the rms error in Bistoquet’s method was about 10 times greater. The incom-

pressibility was also better reserved in our method with an average Jacobian

determinant error of 0.0056 at the time frame with largest deformation, as com-

pared to 0.052 in Bistoquet’s method.

• From the phantom experiments, we have optimized the parameters in the method.

We showed that the reconstructed displacement error decreases when the num-

ber of integration steps increase, which requires longer computation time. As

a tradeoff we chose the number of steps to be 20. With this number of steps

the reconstruction error was minimized by choosing a smoothing parameter ρ0

of 1.15.

• Our method was applied to reconstruct the 3D incompressible motion of the
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left ventricle of a human heart, and was validated by comparing the results

with the 2D motion computed from HARP on validation images. Over all

20 frames, the reconstruction error of our method was about half the error

of Bistoquet’s method. At time frame 10, when the heart deformed the most

and the reconstruction errors were the largest for both methods, the average

displacement error in our method was 0.61 mm and Bistoquet’s method was

1.08 mm. The Jacobian determinant errors for the two methods were 0.043 and

0.081, respectively.

• We applied our method to reconstruct the 3D tongue motion of a normal subject

during speech. From the reconstructed dense 3D motion, we computed the

dense 3D Eulerian strain maps which can be a useful tool for tongue functional

analysis.

9.4.2 Future Work

• It is possible to adopt other other divergence-free interpolation kernels in our

method, e.g., the smooth kernel matrix generated from a Gaussian function, and

the class of compactly-supported kernels derived from Wendland functions. Fu-

ture investigation is required to compare these kernel functions with the DFVS

used in our method.

• The large deformation diffeomorphism (LMLDD) approach computes smooth
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trajectories over time, and theoretically can be adapted to reconstruct the op-

timal incompressible displacement field. However, it requires intensive com-

putation and is not feasible for our application because of the large number

of data samples. Future investigations on reducing the computation of incom-

pressible LMLDD on large number of data samples may open new directions for

incompressible motion reconstruction. Possible strategies include using image

pyramid with different levels of resolutions, reducing number of samples, and

so on.

• Future work also includes the investigation of applying our 3D incompressible

deformation reconstruction method to other image analysis problems, for ex-

ample prostate and brain image registration.

9.5 Preliminary Studies on Internal Tongue

Motion

In Chapter 8, we performed two preliminary studies on the internal tongue motion

patterns of glossectomy patients through comparison with normal speakers. In the

first study, we performed statistical analysis on velocity fields of normal speakers using

PCA, and tried to explain the motions of patients with different surgical procedures.

In the second study, we computed the mechanical properties of IL muscle fiber of
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a normal speaker and a glossectomy patient with a free flap implant, and observed

notable differences that can be related to the physiological changes caused by the

surgery.

9.5.1 Main Results

• In the PCA study, we performed PCA on the velocity fields of five normal

speakers. The eigenvalues corresponding to the four PCs were 372.24, 157.05,

39.27 and 11.03, respectively, and it indicated that PC1 and PC2 accounted for

most of the variance in the five normal speakers.

• In the PCA study, we tried to explain the five patients’ motions using the PCs

computed from the five normal speakers, and discovered that four patients’

motions were very well explained by the first two PCs, and one was very well

explained by PC3.

• In the muscle mechanics study, we were able to discover notable differences

in the mechanical properties of between normal and patient speakers, and the

differences was used to explain the control difficulties faced by glossectomy

speakers.
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9.5.2 Future Work

• Both studies were performed on a limited number of patients and normal speak-

ers. Future work is required to study more subjects for more conclusive results.

• In the PCA study, we have examined only the statistics of the 2D motion on

a 2D section of the tongue. In the future we want to extend it to 3D motion

field on the 3D tongue volume in order to provide more insights on the internal

tongue motion.

• In the PCA study, future investigation is desired to perform PCA both across

subjects and over time after aligning the tongue motion both spatially and

temporally.

• In the PCA study, future work also includes aligning the subjects using de-

formable registration instead of the simplified transformation in our approach

to better accommodate the variations of tongue shapes.

• In the muscle mechanics study, future work is required to extend the study from

2D to 3D to better reflect the facts that the fiber is a 3D structure and moves

in 3D. This possibly can be done by pre-computing the 3D dense displacement

fields using the method described in Chapter 7.
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9.6 Overall Perspective

The dissertation aimed to improve the functional and mechanical analysis of

tongue and cardiac muscles through the reconstruction of 3D motion fields from

tagged MR images with minimal modeling. We have explored and provided solutions

to several difficulties faced in 3D motion reconstruction, e.g., reliable 2D motion track-

ing, fast 3D imaging of tongue motion, incompressible motion field reconstruction,

and so on. The research has provided new and beneficial tools for both scientific

and clinical studies of muscle motion, especially in tongue imaging. We hope the re-

search will also provide more insights for other image analysis tasks, including image

registration and atlas-based segmentation when computing the deformation fields.
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