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Abstract

In this paper, a new automatic contour tracking system, EdgeTrak, for the ultrasound image

sequences of human tongue is presented. The images are produced by a Head and Transducer

Support System (HATS). The noise and unrelated high-contrast edges in ultrasound images make

it very difficult to automatically detect the correct tongue surfaces. In our tracking system, a

novel active contour model is developed. Unlike the classical active contour models which only

use gradient of the image as the image force, the proposed model incorporates the edge gradient

and intensity information in local regions around each snake element. Different from other active

contour models that use homogeneity of intensity in a region as the constraint and thus are only

applied to closed contours, the proposed model applies local region information to open contours

and can be used to track partial tongue surfaces in ultrasound images. The contour orientation

is also taken into account so that any unnecessary edges in ultrasound images will be discarded.

Dynamic programming is used as the optimisation method in our implementation. The proposed

active contour model has been applied to human tongue tracking and its robustness and accuracy

have been verified by quantitative comparison analysis to the tracking by speech scientists.

Keywords: Snake; Tracking; Tongue; Ultrasound images

1



1 Introduction

Ultrasound imaging is one of most attractive ways of acquiring image sequences of the tongue

during speech. It does not expose the subject to radiation and can capture time-varying features

in real-time. With the Head and Transducer Support System (HATS) (Stone and Davis, 1995),

the head of the subject is fixed and the transducer is placed below the chin in a known position.

In this way, accurate and reliable ultrasound images can thus be obtained during natural speech.

To reconstruct the tongue shapes from ultrasound images, automatic extraction and tracking of

the tongue surface is necessary to avoid manual extraction which is time consuming. We developed

a system, EdgeTrak, that can track the tongue surfaces through a sequence of two-dimensional

ultrasound images. The user input is just several points along the tongue surface in a single frame.

An approximated contour is obtained by B-spline interpolation. This contour is then attracted

to the tongue surface by an automatic optimisation process. The optimised contour in a current

frame can be used to approximate the tongue surface in the temporally immediate adjacent frame

and the automatic optimisation process is applied in this adjacent image again. The steps are

repeated through all images to produce tongue surfaces for a sequence of images.

In ultrasound images, there are always high-contrast edges unrelated to the structure of interest,

and the tongue surface may be interrupted in several places (Unser and Stone, 1992). These noise

characteristics make it difficult to automatically track tongue contours in ultrasound images. Our

system uses snake (Kass, Witkin and Terzopoulos, 1988) as the tool for detecting the tongue

surface. Snake is an active contour defined within an image that can move closer and closer to

the edge while its associated energy is minimised. The energy terms of the snake are classified

as internal and external energies. The internal energy is related to the contour shape and the

minimisation goal for internal energy is to get smooth and continuous curves. This makes it

possible to estimate the edge positions even in places where the surface is interrupted. The

external energy is computed from the image data and it is the only term that attaches the active

contour to the image. Cohen proposed the balloon model (Cohen, 1991; Cohen and Cohen, 1993),
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Gunn et al. introduced the dual active contour model (Gunn and Nixon, 1997) in order to prevent

the active contour from stopping at local minima. Chalana et al. and Akgul et al. applied temporal

smoothness (Chalana and Linker, 1996; Akgul, Kambhamettu and Stone, 2000) in addition to the

spatial constraints in a single frame. Chan et al. introduced a region-based external energy (Chan

and Vese, 2001) instead of the gradient of the edge for closed contour. Amini et al. developed

dynamic programming (Amini, Weymouth and Jain, 1990) as the optimisation process for the

snake model.

In the EdgeTrak system, temporal smoothness is not added to the internal energy component

in order to give more flexibility to tracking during large tongue motion; however, this can be easily

added. We use the contour in the previous frame as the initialisation of the current contour and

use dynamic programming to optimise the location of the contour. To deal with the noise and

unrelated edges in images, region information is applied to open contours and intensity in local

regions is incorporated with edge gradient as the external energy. To the best of our knowledge,

the active contour model in our system is the first model that applies region information to open

contours.

Akgul et al. also presented a tongue contour tracking system (Akgul, Kambhamettu and Stone,

1999; Akgul et al. 2000). In their external energy definition, only gradient information is used;

this would cause some tracking problems since the tongue surface cannot be distinguished from

other high-contrast edges in the images. We solve this problem by introducing an intensity related

constraint. See details in Section 2.

2 Novelty of the proposed active contour model

Among the different energies in a snake model, the external energy is usually related to gradient of

the image. In reality, images are generally noisy and there are always high-contrast unrelated edges

which make the gradient information insufficient to extract edges of interest. By constraining the

homogeneity of intensity (the image brightness) in a region, the edge of a region in a noisy image
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(a) (b)

Figure 1: (a) Example of ultrasound image of the tongue. (b) Example of closed contour.

can be successfully extracted (Chalana, Costa and Kim, 1995; Chan and Vese, 2001), but this

constraint has some limitations:

First, it can only be applied to closed contours, and can not be used in some applications

where open contours need to be tracked. One example of such applications is the human tongue

tracking in ultrasound images. The ultrasound images are formed by propagating ultrasound

waves through the subject’s tongue so that part of its surface is obtained in the image (Stone

and Davis, 1995). An ultrasound tongue image is shown in figure 1(a). The bright white band

is the air reflection at the upper surface of the tongue. The lower edge of the band is the upper

surface of the tongue, and the upper edge of the band has no physical interpretation. Thus, only

lower edge is of interest to speech scientists though both edges have high gradient. It is hard to

distinguish them by only using gradient information and there is no enclosed region where the

constraint of homogeneity of intensity can be applied.

The second limitation of the constraint of intensity homogeneity can be seen from the example

image in figure 1(b). In this image there is a key-chain ring which has the shape of a band. If

the outer edge of the key-chain ring is of interest, the constraint of intensity homogeneity will fail

since the region enclosed by the inner edge is more homogeneous than the region enclosed by the

outer edge.

The proposed snake model in this paper combines the edge gradient and intensity in local

regions. The local regions are not enclosed by the objective contour, they are in fact associated

with each snake element. With the proposed snake model, the upper edge and lower edge of the
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air reflection in the ultrasound images, or the inner edge and the outer edge of the key-chain ring,

can be distinguished. The proposed snake model has been applied to human tongue tracking and

its robustness and accuracy has been verified by the speech scientists via a quantitative analysis in

this paper. The related software, EdgeTrak, is in use at several institutions for studying various

aspects of tongue with applications in otolaryngology, linguistics, etc. (li, Kambhamettu and

Stone, 2004).

3 The active contour model

The active contour model, or snake (Kass et.al, 1987), is an energy minimisation method to extract

edges in images. The energy definition for snakes is:

ETotal = αEint + βEext (1)

where Eint is the internal energy, Eext is the external energy, α and β are the weighting parameters.

Eint controls the contour shape and it is only related to the geometry property of the contour.

Eext attaches the contour to the image and defines the image features that are of interest.

Given a contour which is a set of points [v0, v1, ..., vn−1], the internal energy controls the smooth-

ness and continuity of the contour and is defined as (Akgul and Kambhamettu 1999):

Eint(vi) = α1(1 −
~vi−1vi. ~vivi+1

| ~vi−1vi| . | ~vivi+1|
) + β1||vi − vi−1| − d| (2)

where vi is the ith snake element, α1 and β1 are the weighting parameters. d is the average length

between two continuous snake elements.

The external energy is usually defined as the negative of the image gradient (Gunn et al., 1997;

Akgul et al., 2000) and we use the normalised external energy as:

Eext(vi) = 1 − |5I(vi)| /M (3)
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Figure 2: The definitions for ti, ni, Ri and R
′

i.

where M is the normalisation constant, I is the image intensity. At each pixel (x, y) of the image,

the image gradient is defined as 5I(x, y) = ( ∂I(x,y)
∂x

, ∂I(x,y)
∂y

).

In reality, using only gradient information as the external energy is not enough due to the

image noise and the high-contrast edges unrelated to the structure of interest. The constraint of

homogeneity of intensity in a region is also not appropriate in case of open contours, or closed

contours of band-shape objects. A region based band energy is presented below to solve these

problems and it is also the main contribution of this paper.

In our active contour model, the contour is a set of snake elements [v0, v1, ..., vn−1] and the order

of these elements are kept in the whole optimisation process. For snake element vi, we define its

tangent ti as the direction of the line connecting its two neighbour elements:

ti =
vi+1 − vi−1

|vi+1 − vi−1|
. (4)

The normal vector ni of element vi can be obtained by rotating ti 90 degrees in the counter-

clockwise direction. Then we can define two regions Ri and R
′

i for vi. Ri is a quadrilateral with

one edge connecting vi and vi+1 while another edge is in the normal direction. R
′

i is same as

Ri except that it is in the opposite direction of the normal vector. For a band-shape object, Ri

should be inside the band and R
′

i should be outside the band, or vice versa. The difficulty in

defining Ri and R
′

i is that we cannot easily decide the edge length of the quadrilateral in the
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(a) (b) (c)

Figure 3: Extraction of the outer edge of a key-chain ring. (a) Snake initialisation. (b) Edge
extracted without band energy. (c) Edge extracted with band energy.

normal direction. This should depend on the application and the length should be smaller than

the depth of the band. In our current system which is designed for tongue contour tracking from

ultrasound images produced by HATS (Stone and Davis, 1995), there are 33 snake elements for

each snake. We simply approximate the edge length as the average length between adjacent snake

elements. The edge length is several pixels with this approximation. This definition guarantees

that the edge length is smaller than the depth of the bright white band as shown in figure 1(a).

The definitions for ti, ni, Ri and R
′

i are shown in figure 2.

Suppose Ri is inside the band and the band-shape object of interest has a high intensity value

than the background of the image, then the difference between the mean intensity of region Ri

and the mean intensity of region R
′

i should be large. The mean intensity difference between Ri

and R
′

i is:

dif(vi) =
1

n · N
· (

∑

pj∈Ri

I(pj) −
∑

p
′

j
∈R

′

i

I(p
′

j)) (5)

where pj is the pixel in region Ri, p
′

j is the pixel in region R
′

i, n is the number of pixels in region

Ri or R
′

i and N is the intensity normalisation constant. In our application, N is 255.

The region based band energy is then defined as:

Eband(vi) =











pen dif(vi) < 0

1 − dif(vi) otherwise
(6)
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(a) (b) (c) (d)

Figure 4: Extraction of tongue contour. (a) Ultrasound tongue image. (b) Snake initialisation.
(c) Edge extracted without band energy; some snake elements are attracted to the unrelated
high-gradient upper air reflection edge. (c) Edge extracted with band energy.

where pen is a penalty constant applied to vi when the mean intensity difference between Ri and

R
′

i is less than zero. In our application, we let pen = 2 and obtain good results for the tongue

edge extraction. For snake elements which are located at the two ends of the snake and have no

normal definitions, we use Eband of their neighbours to approximate their band energies.

Note that we are interested in finding the best location of each snake element vi, where the

intensity difference between Ri and R′

i is the maximum (in case Eband(vi) is the only constraint

which needs to be minimised) among several possible positions of vi (see section4). We do not care

about the absolute value of this difference, which means the depth of R or R′ is not critical. Since

vi is dynamically re-positioned, Ri and R′

i need to be re-calculated according to the orientation of

vi at each iteration of the optimisation process. For fast implementation, we weight the intensity

values of all pixels inside R and R′ uniformly.

Now we have both intensity and gradient information for a snake element and we define a new

external energy:

E
′

ext(vi) = Eband(vi) · Eext(vi). (7)

E
′

ext(vi) uses both intensity and gradient instead of only using gradient. As we explained

above, Eband(vi) is related to the intensity difference between two regions Ri and R′

i around each

snake element vi. One should see that Ri and R′

i are related to the orientation of the snake at

vi, thus Eband(vi) is the intensity difference measure along the normal direction of vi while the

gradient measure Eext(vi) has nothing to do with the orientation of the snake. Most importantly,
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the gradient is just for the snake element while the intensity information comes from neighbour

regions around the snake element. This is very helpful in the tracking problem when the speckle

noise is presented in the image since speckles are not favored by E
′

ext(vi) where the intensity value

is calculated over regions. Also the unrelated edges in the images such as the upper edge of the

air reflection in the ultrasound image and the inner edge (or the outer edge if the orientation of

the contour is reversed) of the key-chain ring will get a penalty from Eband(vi) and can not attract

the active contour any more.

The performance of band energy is shown in figure 3 where the outer edge of the key-chain

ring is the interest. Figure 3(a) is the initialisation of the snake. Without the band energy, the

snake is attracted to the high-contrast inner edge as shown in figure 3(b). With the band energy

and appropriate contour orientation definition(counter-clockwise), the outer edge of the key-chain

ring is correctly extracted as shown in figure 3(c).

Band energy is important in order to correctly detect the human tongue surface in ultrasound

images (see figure 4 for example). Without the band energy, some snake elements are attracted

toward unrelated high-gradient edges (the upper edge of the air reflection) while with band energy,

the tongue surface is correctly extracted.

The band energy definition depends on the normal direction of snake element. In the above

key-chain ring example, one can reverse the contour orientation to extract the inner edge of the

key-chain ring easily since region Ri and R
′

i can be exchanged. In case the object of interest has

lower intensity than the background of the image, the band energy can still work in the same way

with appropriate contour orientation definition.

4 Optimisation process

In our tracking system, the optimisation method is based on dynamic programming (Amini et al.,

1990). The contour of each frame is initialised by copying the contour from the previous frame.

The normal of snake element vi is recalculated in each optimisation step. From the definitions
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of Eint(vi) and E
′

ext(vi) in Equations (2) and (7) respectively, one can see that the energy of the

snake element vi only depends on two neighbours of this element and itself. The optimisation

for one contour can be processed in multiple steps. Each step is decomposed into n independent

stages. In stage i only the energy of vi is minimised and the elements under consideration are

only vi−1, vi and vi+1. After n stages, energies of all snake elements are minimised and the energy

of each element are summed up as the current ETotal. This process continues iteratively until the

ETotal does not decrease any more. Compared with the exhaustive search method, the search cost

is dropped from O(ln) to O(n∗ l3) with dynamic programming (n is the number of snake elements

and l is the size of the search space respectively).

An efficient way to define the search space for the snake element vi is to restrict the search along

the normal direction of this point. In our application, search is in the normal direction and the

position of each snake element is rearranged along the tangent direction of this point after every

step of the optimisation process. The purpose of the rearrangement is to keep all snake elements

evenly located along the contour while the current contour shape is kept unchanged. In EdgeTrak

system, the size of search space is l = 5 by default. It has been found in practice that this search

space works for tracking most tongue contours. In case of large tongue motion which means that

the snake initialisation copied from the previous frame is far away from the true tongue surface,

the search space needs to be increased by user.

E
′

ext(vi) depends on regions Ri and R
′

i. These two regions are decided by the normal of the

snake element. In each step of the optimisation process the normal is calculated to decide the

search direction and at the same time Ri and R
′

i can be obtained according to the normal.

5 Experiment results

EdgeTrak has been used to track the tongue surfaces in ultrasound images. In EdgeTrak system,

the user input is just several points along the tongue surface in the first frame. An approximated

contour is obtained by B-spline interpolation. This contour is then attracted towards the tongue
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’yaya’ ’golly’ ’he sought’

expert 1 vs. expert 2 3.77 2.47 2.50

automatic vs. expert 1 2.64 1.83 2.39

automatic vs. expert 2 3.59 2.20 3.02

Table 1: Mean distance errors in pixels. 1 pixel=0.295mm.

surface by automatic dynamic programming optimisation process. Every frame in the sequence

gets its snake initialisation from its previous frame and the snake is optimised in the same way

as in the first frame. The tracking of an example sequence shown in figure 5 is performed and

the results are shown in figure 6. Another example sequence is shown in figure 7 and its tracking

result is shown in figure 8. The visual inspection of the tracked contours shows that our snake

model works pretty well.

One more sequence is shown in figure 9. In this sequence, more speckle noise is present. Tracking

result by EdgeTrak is shown in figure 10. The tongue surface, which is the lower edge of the air

reflection is successfully tracked. Unrelated high-contrast edges, e.g. the upper edge of the air

reflection is discarded due to the introduced band energy in EdgeTrak. Without the band energy,

it is difficult to distinguish the upper edge of the air reflection from the tongue surface, as shown

in figure 4.

Note that we only use B-spline interpolation to get the snake initialisation from the user input

in the first frame. In the snake optimisation process, the contour smoothness is controlled by

the internal energy defined in Equation (2). Alternative approach is where snake is modeled via

B-spline and the internal energy is not required since the smoothness of the snake is encoded in

the spline formulation (Cipolla and Blake, 1990). In our current tracking system, we use explicit

snake smoothness definition so that the user can control the contour smoothness interactively.

In order to verify the tracking results quantitatively, we compare the difference between the

automatic tracking results and the manual contours drawn by the speech scientists, and compare

the difference between the manual contours drawn by different speech scientists. The difference

between any two contours was calculated using a Mean Sum of Distances (MSD) by measuring
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(a)

(b) (c) (d) (e) (f) (g)

Figure 5: Image sequence of example 1. Every 10th frame from 67 frames is shown. Image (a) is
the first frame.

(a)

(b) (c) (d) (e) (f) (g)

Figure 6: Tracked contours for the sequence in figure 5. User input is only seven points in the
first frame.
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(a)

(b) (c) (d) (e) (f) (g)

(h) (i)

Figure 7: Image sequence of Example 2. Every 4th frame from 33 frames is shown. Image (a) is
the first frame.

the distances between closest snake elements of each contour. The MSD between two contours

U = [u1, u2, ..., un] and V = [v1, v2, ..., vn] is defined as:

MSD(U, V ) =
1

2n
(

n
∑

i=1

min
j

|vi − uj| +

n
∑

i=1

min
j

|ui − vj|). (8)

Contours tracked by the automatic tracking system, EdgeTrak, and manual tracking by two

speech scientists for three speech sequences were compared. The speeches for these three sequences

are ’yaya’, ’golly’ and ’he sought’ respectively. The comparison is listed in table 1. As the numbers

indicate, the automatic contours are not isolated from the expert detected contours and the pixel

errors between the automatic contours and manually drawn contours by scientists are quite low.

6 Conclusion

An automatic contour tracking system, EdgeTrak, for the ultrasound image sequences of human

tongue is presented. This tracking system is based on a novel snake model. In this snake model,

region information around each snake element is incorporated with the image gradient and the

contour orientation is taken into account. Compared with the traditional snake model and other
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(a)

(b) (c) (d) (e) (f) (g)

(h) (i)

Figure 8: Tracked contours for the sequence in figure 7. The user input is only seven points in
the first frame.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: A difficult sequence with more noise.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10: Tracked contours for the sequence in figure 9.
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models which use homogeneity of intensity in a closed region as the image constraint, our snake

model is robust to the speckle noise and can be applied to open contour tracking problems where

region information is involved.

The robustness of the proposed model has been verified by comparing the automatic tracking

results and the manual contours drawn by the speech scientists. EdgeTrak is currently being used

by scientists at several institutions. Feedbacks from them indicate that the system is efficient and

accurate for speech research and related applications.
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