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Abstract

In this paper, a method to get the best representation of a speech motion from several repetitions

is presented. Each repetition is a representation of the same speech captured at different times by

sequence of ultrasound images and is composed of a set of 2D spatio-temporal contours. These 2D

contours in different repetitions are time aligned first by a shape based Dynamic Programming

(DP) method. The best representation of the speech motion is then obtained by averaging the time

aligned contours from different repetitions. Procrustes analysis is used to measure the contour

similarity in the time alignment process and to get the averaged best representation. To get the

point correspondence for Procrustes analysis, a nonrigid point correspondence recovery method

based on a local stretching model and a global constraint is developed. Synthetic validations and

experiments on real tongue motion are also presented in this paper.

Keywords: Motion analysis; Nonrigid motion; Dynamic programming; Time alignment
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1 Introduction

The tongue motion in a fixed plane can be recorded with a sequence of images. The imaging

techniques include ultrasound, X-ray , MRI and many others. Tongue surfaces can be extracted

from images (Li, Kambhamettu and Stone, 2003; Akgul, Kambhamettu and Stone, 1999) thus

2D tongue motion in a fixed plane is represented by a sequence of spatio-temporal 2D contours.

Each contour describes the tongue shape at a certain time instance. To best capture the tongue

motion, the same speech is repeated by the same subject several times. Because biological systems

are imprecise, humans do not produce identical repetitions of the same item. To provide the best

representation of an utterance, averaging of different repetitions is a useful technique. However

in different repetitions, the subject varies in speaking rates, and small tongue shape differences

may result in arbitrary spatial shifts. These shifts may be different for different repetitions.

Therefore a time-warping algorithm is needed to align temporal variations in multiple repetitions

before averaging. Dynamic Programming (DP) algorithm has been used successfully to eliminate

the effect of inter and intra-speaker variation in speech recognition (Sakoe and Chiba, 1978). It

has also been used by Yang and Stone (Yang and Stone, 2002) to align repetitions of the same

utterance in different planes, for 3D tongue reconstruction purpose. These DP algorithms find the

optimal time registration between two repetitions based on the minimum total distance measure

of the acoustic feature. However, an acoustic signal is not always available, for example, when

studying swallowing. Shape based time alignment is a useful alternate for tongue analysis.

In this paper, we use shape based Dynamic Programming to align different repetitions of the

same utterance. The best representation of the speech motion is then obtained by averaging

the time aligned contours from different repetitions. Procrustes analysis is used to measure the

contour similarity in the time alignment process and to get the averaged best representation. The

utterance is recorded with ultrasound images. With the Head and Transducer Support System

(HATS) (Stone and Davis, 1995), the head of the subject is fixed and the transducer is placed

below the chin at a known position. Accurate and reliable ultrasound images can be obtained.
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2D tongue contours are extracted from the ultrasound images with an automatic contour tracking

system (Li, Kambhamettu and Stone, 2003).

The problem we are trying to solve is: given a set of 2D contour sequences, where each sequence

is a representation of the same object motion recorded at different times and the time-varying

gesture differs across sequences, construct a mean sequence of all available sequences that best

models the given object motion.

The outline of our tongue motion averaging method is below:

1. Input m contour sequences S1, S2, ..., Sk, ..., Sm. The kth sequence Sk consists of nk contours

Ck1, Ck2, ..., Cknk
and each contour is represented by a set of object boundary points.

2. Time alignment: perform time alignment algorithm between contour sequences S1, S2, ...,

Sk, ..., Sm, and get the time aligned sequences S
′

1
, S

′

2
, ..., S

′

3
, ..., S ′

m. Each time aligned se-

quence has the same number n of contours.

3. Mean shape computing: calculate the mean shape Ŝ of S
′

1
, S

′

2
, ..., S

′

3
, ..., S ′

m. The ith contour

of Ŝ is the mean of all the ith contours of S
′

1
, S

′

2
, ..., S

′

3
, ..., S ′

m where 1 ≤ i ≤ n.

2 Time alignment

Since different sequences Sk of the same motion are captured in different repetitions, time vari-

ations exist among these sequences due to the small tongue shape differences and the change

of motion velocity in different repetitions. There are two types of time variations. First, the

sequence length is different for different repetitions. Second, a given contour (say, the ith con-

tour) in different sequences is not the representation of the same time instance of the motion.

A time registration method is necessary to align different sequences in time and to get the best

representation of the motion.

The method we used for time alignment is based on DP and it is performed between each

sequence and the selected reference sequence. After each sequence is time aligned with the refer-
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ence, the time alignment is established between any two sequences by transitivity. All sequences

have the same number of contours as the reference by linear interpolation between contours after

time registration. The reference sequence we selected is the longest sequence among all available

sequences because more information of the raw data can be kept after time registration.

Consider the time alignment between one test sequence St and the reference sequence Sr. The

contours in these two sequence are Ct1, Ct2, ..., Ctnt
and Cr1, Cr2, ..., Crnr

and the sequence lengths

are nt and nr for these two sequences respectively. Contours in these two sequences define a grid

of nt by nr. As shown in figure 1(a), a possible path P = p1p2...pL of this grid has L points and

the point pi = (tit, rir) along this path is defined by the indices of contour Ctit and Crir where

1 ≤ it ≤ nt and 1 ≤ ir ≤ nr.

The optimal path among all possible paths is the path which has the minimum cost. It represents

a best matching between the two sequences (St and Sr).

If P = p1p2...pL is the optimal path, let d(tit, rir) = d(Ctit, Crir) denote the contour matching

cost between contours Ctit and Crir where pi = (tit, rir) is a grid point along this path; let

D(tit, rir) = D(Ctit, Crir) denote the accumulated path cost from the first grid point to point

pi = (tit, rir) along this path. The sub-path from point pi−1 should also be optimal. If we

constrict the choice of pi−1 and define the sub-path cost by using a template shown in figure 1(b),

then:

D(tit, rir) = min















































D(tit − 3, rir − 1) + 2d(tit − 2, rir) + d(tit − 1, rir) + d(tit, rir)

D(tit − 2, rir − 1) + 2d(tit − 1, rir) + d(tit, rir)

D(tit − 1, rir − 1) + 2d(tit, rir)

D(tit − 1, rir − 2) + 2d(tit, rir − 1) + d(tit, rir)

D(tit − 1, rir − 3) + 2d(tit, rir − 2) + d(tit, rir − 1) + d(tit, rir)

(1)

This symmetrical template is similar to what was used by Yang et al. (Yang and Stone, 2002)

and it was reported to have good performance by Sakoe and Chiba (Sakoe and Chiba, 1978). The

slope weighting coefficients in the template control the distribution of the local distance for each
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Figure 1: (a) A possible path P and one grid point pi = (tit, rir) along this path. (b) The sub
path template.

path.

The optimal path cost is defined as the accumulated cost of the last point pL along this path.

The whole process of the DP algorithm is as follows:

1. Initialization: For each point pi = (tit, rir), calculate the contour matching cost d(tit, rir) =

d(Ctit, Crir). Let D(1, 1) = d(1, 1).

2. Forward calculation : For each point pi = (tit, rir), calculate D(tit, rir) according to Equa-

tion 1 and record its sub path.

3. Termination: In the last column of the grid, find the point pL which has the minimum

accumulated cost. pL is the last point of the optimal path.

4. Backward tracing: from point pL, back trace the track.

The contour matching cost we selected is the Procrustes distance1 between two contours. Pro-

crustes distance has been frequently used in medical image analysis (Duta, Jain and Dubuisson-

Jolly, 2001) and it is suitable for our application due to the following reasons: First, it is designed

to measure shape similarity and the time alignment algorithm aims to find pairs of the most sim-

ilar contours from two different sequences. Second, it provides a convenient way to calculate the

1Procrustes was the nickname of a robber who lived on the road from Eleusis to Athens. He offered travelers a
room with a bed and he would fit them into the bed by stretching them if they were too short or cutting off their
legs if they were too tall (Dryden and Mardia, 1998).
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mean shape from a set of time aligned shapes. But the Procrustes distance should be calculated

between sets of corresponding points which are not available from the input data, therefore we

developed an algorithm to set up point correspondences between two contours that is presented

in Section 4.

3 Mean shape and the Procrustes analysis

After the time alignment, the mean shape of the object at any aligned time instance is defined as

the Procrustes average of contours from all sequences at the same time instance. To calculate the

Procrustes average of a set of contours, the Procrustes distance between any two contours and

the mean contour should be defined first. The Procrustes distance is also the contour matching

error we used in the Dynamic Programming for time alignment.

Consider two centered contours C1 = (y1, y2, ...yk)
T and C2 = (w1, w2, ..., wk)

T where yi and wi

are the ith point vectors of C1 and C2 respectively and these two points correspond to each other.

In order to compare these two shapes, the Procrustes analysis fits C2 to C1 with a similarity

transformation and the difference between the fitted C2 and observed C1 indicates the magnitude

of the shape difference between C1 and C2.

The similarity transformation in Procrustes analysis is defined as a sequence of transformations

T of rotation, scale and translation. The Procrustes distance is defined as:

dP (C1, C2) = inf
T

|(
C1

|C1|
−

T (C2)

|T (C2)|
)|. (2)

The Procrustes distance between C1 and C2 is the Euclidean distance from C1 to the best fitted

C2 with the similarity transformation T . It is also normalised to get rid of the shape scale effects.

The Procrustes average of a set of contours C1, C2, ..., Cn is the mean shape of these contours and

the summation of the Procrustes distance of all contours to the mean should be minimised. So

6



the mean Ĉ of C1, C2, ..., Cn is:

Ĉ = arg inf
C

n
∑

i

d2

P (Ci, C). (3)

The details of Procrustes analysis can be found in (Dryden and Mardia, 1998).

4 Point correspondence recovery

Both the time alignment and averaging steps need point correspondence between contours. How-

ever, the problem of recovering nonrigid point correspondence is not trivial. Many researchers

directly compare shapes to get the point correspondence, e.g. Wang et al. (Wang, Peterson

and Staib, 2000) minimise the distance, curvature, and normal differences between corresponding

point sets, while Belongie et al. (Belongie, Malik and Puzicha, 2001) match two shapes by com-

paring the shape context, which is a set of points around the point of interest. Another approach

of nonrigid point recovery is modelling the nonrigid transformation between shapes. Amini et

al. (Amini and Duncan, 1992) minimise the bending and stretching energies between shapes to

recover point correspondence while Kambhamettu et al. (Kambhamettu and Goldgof, 1994) find

the point correspondence by recovering a pre-defined nonrigid motion model.

The method we used for nonrigid point correspondence recovery in this paper is based on

(Kambhamettu and Goldgof, 1994) but with some extensions: first, the motion in (Kambhamettu

and Goldgof, 1994) can only be conformal motion while it is not restricted in our method in condi-

tion that the shape difference is small. This is important for the speech analysis since the tongue

motion is not conformal. Second, only the change of curvature is modeled in (Kambhamettu and

Goldgof, 1994) but the relationship between the changes of arc length and the curvature is mod-

eled in our method. Third, a global constraint is added in addition to a local stretching model in

our method while in (Kambhamettu and Goldgof, 1994) each point finds its correspondence inde-

pendently without a global constraint. With this global constraint, it is guaranteed that several

points on one contour will not be mapped onto the same point on another contour.

In our method, to compare a contour C to another contour C ′, the point correspondence is not
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recovered for all original points (original points refer to all points on a contour) on C. Instead,

contour C is represented by some sample points from the original contour points. These sample

points are equally distributed along C and the distance between consecutive sample points is

about 2-3 pixels. To recover the corresponding points on C ′ for these sample points, the sample

points are compared with all possible original points on C ′. In this way, we can avoid the local

noise and point contention problem. This approach is motivated by and similar to (Duta, Jain

and Dubuisson-Jolly, 2001).

The Procrustes distance between two contours used in previous sections is calculated between

corresponding sample points. The Procrustes average of a set of contours of the same time instance

is therefore represented by the averaged sample points. The whole contour of the Procrustes

average then can be obtained by the cubic spline approximation of these averaged sample points.

4.1 Local stretch modelling

To recover the point correspondence between two contours, we first model the local stretching of

a contour. Consider two contours C and C ′. For a sample point P on C, the possible hypotheses

about its corresponding point is formed in some small neighbourhood around the closest point to

P among all original points on contour C ′. The closest point to P is decided by aligning C to C ′

using the rigid Iterative Closest Point (ICP) (Besl and Mckay, 1992) method and C ′ is extended

(Parthasarathy, Stone and Prince, 2003) to make sure there is a corresponding point on C ′ for

any point at the ends of C. Figure 2(a) shows the correspondence hypotheses of P on contour C ′.

Here, P can correspond to any original point within some region, W . W is the region we check

for point correspondences. It is defined by assuming that there is only small difference between C

and C ′. In this figure, P can correspond to any of the 5 points in the window, W . Then the point

correspondence reliabilities of the correspondence hypotheses will be checked. In the estimation

of point correspondences, original points in the neighbourhood are also considered. i.e, a local

curve α around the sample point P . The mapping of a set of neighbouring points pi of P onto

another set of neighbouring points p′

i of the point correspondence hypothesis P ′ satisfies our local

8



stretch model which is presented below. The local curve α of point P is shown in figure 2(b). It is

compared to the local curve α′ of each point correspondence hypothesis P ′. The matching error

between α and α′ indicates the correspondence reliability between points P and P ′.

Let pi denote the ith point on the local curve α of point P ; let p′

i denote the ith point on the

local curve α′ of the point correspondence hypothesis P ′; let s(pi) and s′(p′i) denote the curve arc

length at pi and p′i on α and α′ respectively. To compare two curve segments, we model the shape

difference of these two curve segments by way of a nonrigid motion model. A simple nonrigid

motion example is homothetic motion (Kambhamettu and Goldgof, 1994). For 2D homothetic

motion, the expansion or contraction is uniform and the following relationship is true for all i:

s′(p′i)

s(pi)
=

k(pi)

k(p′i)
(4)

where k(pi) and k(p′i) are the curvatures of points pi and p′i respectively.

The homothetic motion models uniform expansion or contraction in the radial direction for

all points along a curve. For most interesting medical object motions such as human tongue

and heart motion, if the motion is small, one can assume that the motion is along the radial

direction, however the motion is not uniform. The actual motion has little variance compared

with the homothetic motion. The relationship between the arc length stretching and the curvature

changes is not same as Equation 4 but the actual relationship is not far away from Equation 4. We

model the arc length stretching as a linear function of the curvature change for the non-homothetic

situation:

s′(p′i)

s(pi)
= a

k(pi)

k(p′i)
+ b (5)

where a and b are the linear function parameters.

With the above linear model, the reliability of correspondence between P and P ′ can be esti-
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Figure 2: The correspondence hypotheses and the region of neighbourhood.

mated by the residual error:

erL(P, P ′) =
∑

pi∈α,p
′

i
∈α′

(s′(p
′

i) − s(pi) · (a ·
k(pi)

k(p
′

i)
+ b))2. (6)

If P and P ′ are the best matching, then:

∂erL

∂a
= −2

∑

pi∈α,p
′

i
∈α′

(s2(p
′

i) − s1(pi) · (a ·
k(pi)

k(p
′

i)
+ b)) ·

k(pi)

k(p
′

i)
· s(pi) = 0 (7)

∂erL

∂b
= −2

∑

pi∈α,p
′

i
∈α′

(s2(p
′

i) − s1(pi) · (a ·
k(pi)

k(p
′

i)
+ b)) · s(pi) = 0. (8)

The values of the linear model parameters a and b can be obtained from Equation 7 and 8.

If their values are substituted in Equation 6, the residual error erL(P, P ′) by fitting α and α′

to the linear motion model of Equation 5 can be calculated. For point P , the residual error is

calculated for each point correspondence hypothesis P ′ in the region of interest, W . The point P ′

with smaller residual error is more reliable as the correspondence of P .

4.2 Global stretching constraint

With the above local stretch modelling constraint, every sample point P on contour C is looking for

its best matched point on C ′ independently. The correspondence information from the consecutive

10



P
1

2

3

4

5

Q

(P,P’)

Figure 3: The grid and sub path template for point correspondence recovery.

sample points of P is not taken into account. Several points on C may be mapped onto the same

point on C ′ (many-to-one mapping problem). We add a global constraint to the correspondence

recovery by minimizing the total stretching between C and C ′. This constraint is similar to what

is used in (Amini and Duncan, 1991). The many-to-one mapping problem will be avoided with

this global constraint.

Let Q and P denote two consecutive sample points in contour C; let Q′ denote the correspon-

dence point of Q; let P ′ denote the under-consideration correspondence hypothesis of P . The

global stretching constraint defines an error at point P as:

erE(P, P ′) = S(Q, P ) − S(Q′, P ′) (9)

where S(Q, P ) is the arc length between points Q and P along contour C, S(Q′, P ′) is the arc

length between points Q′ and P ′ along contour C ′. This error minimises the stretching energy

between two contours. With this constraint, the arc length between Q′ and P ′ tends to be similar

as the arc length between Q and P , thus avoiding Q and P to map onto the same point.

Combining two constraints together, the error that needs to be minimised for all sample points

is:

er =
∑

P

αerL(P, P ′) + βerE(P, P ′) (10)

where α and β are the weighting parameters.

er is minimised again with a Dynamic Programming algorithm. A m by k grid is defined by
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Figure 4: For each pair of time aligned contours, the Procrustes distance is calculated according
to our correspondence recovery method (circle) and Kambhamettu’s method (triangular).

all sample points P of contour C and the searching window W , where m is the number of sample

points of C and k is the size of W . This grid and the searching template is shown in figure 3. In

this figure, the size of searching window is 5. A grid node, e.g (P, P ′) in column P tests all nodes

in the previous column Q to decide the optimal sub path to it. Each node on the final optimal

path represents a pair of corresponding points.

5 Validation

Several experiments are conducted to validate our point correspondence recovery and time align-

ment methods.

5.1 Performance of point correspondence recovery

In the time alignment step, point correspondence between contours is required to calculate the

Procrustes distance. If contour C1 of one sequence is best aligned in time with contour C2 of the

second sequence, the Procrustes distance between C1 and C2 should be smaller (if the Procrustes

distance is calculated using accurate point correspondences). This fact supplies a way to eval-

uate our point correspondence recovery method. Two sequences S1 and S2 of the same speech
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Figure 5: (a) 13 contours of sequence 1. (b) 7 contours of sequence 2. (c) Optimal path. See text
for details.

Sequence 1 1 2 3 4 5 6 7 8 9 10 11 12 13
Original 1’ 2’ 2’ 3’ 4’ 4’ 4’ 5’ 6’ 7’ 7’ 8’ 9’

Table 1: Frames of the created sequence 1 and the corresponding frames of the original sequence.

’he taught’ are time aligned manually (there are 26 contours in both S1 and S2). Procrustes

distances between time aligned contours are calculated with our correspondence recovery method

and Kambhamettu’s method (Kambhamettu and Goldgof, 1994), respectively. The comparison

between these two methods is shown in figure 4. In this figure, the Procrustes distance (circle)

calculated according to our point recovery method is smaller than the Procrustes distance (trian-

gular) from Kambhamettu’s method for each pair of time aligned contours. One can see that our

point correspondence recovery method works better for the time alignment problem.

5.2 Validation of time alignment

We have performed several experiments to validate our time alignment algorithm. We present

one such experiment below. First, one repetition of the word ’golly’ was selected as the original

sequence. Then two sequences were created from the original sequence for the experiment. For

clarity, let n′ denote the nth frame in the original sequence, let n denote the nth frame in the

created sequence.

In this experiment, sequence 1 was created with 13 frames, which are frames 1′, 2′, 2′, 3′, 4′, 4′, 4′, 5′,
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Sequence 2 1 2 3 4 5 6 7
Original 1’ 2’ 4’ 4’ 6’ 7’ 9’

Table 2: Frames of the created sequence 2 and the corresponding frames of the original sequence.

6′, 7′, 7′, 8′ and 9′ of the original sequence. Sequence 2 was created as a sparse data set which has

7 frames which are frames 1′, 2′, 4′, 4′, 6′, 7′ and 9′ of the original sequence. The frame num-

bers of these two created sequences and corresponding frame numbers of the original sequence

are listed in table 1 and 2 for sequence 1 and 2, respectively. Frames in these two sequences

were selected with random duplication, and some frames in sequence 1 are omitted in sequence

2. These two sequences are shown in figure 5(a) and figure 5(b). The obtained optimal path

between them is shown in figure 5(c). The longest sequence is always selected as the refer-

ence sequence. The obtained optimal path is (1, 1), (2, 3), (3, 6), (4, 7), (5, 9), (6, 11), (7, 13), i.e.

(1’,1’),(2’,2’),(4’,4’),(4’,4’),(6’,6’),(7’,7’),(9’,9’) of the original sequence. All contours are correctly

aligned. After alignment the shorter sequence is interpolated to the length of the longer one.

6 Experiments

The algorithm was applied to three datasets to demonstrate its use. All utterances were repeated

at one second intervals. The first utterance is the word ’golly’, which has four repetitions. This

word requires considerable high-to-low motion and deformation of the tongue within the vocal

tract space. The second utterance is five repetitions of the phrase ’he taught’, which has front-to-

back tongue motions. The third utterance consists of four repetitions of ’ee’-’aa’. The alternating

’ee’-’aa’ motions involve the two most extreme positions of the tongue in the vocal tract: high-front

(ee) and low-back (aa). These three utterances are from three different subjects. The standard

deviation was calculated at each of the individual sample points for all the repetitions. These

individual standard deviations were then averaged for each contour to produce a global measure

of variation: the average standard deviation.

Figures 6-8 display the three datasets in several ways. In each figure, (a) shows a time-motion
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display (x, y, t) of the averaged midsagittal tongue contour deforming over time. The right

axis shows frame numbers and the left axis shows the tongue height. The x-axis shows the xy-

coordinate points for each contour. The tongue tip is on the right and the back on the left. Figures

6-8 (b) show the same material projected on XT-plane. Local tongue displacement goes from very

high (black) to very low (white). Figures 6-8 (c) display the average standard deviation for each

frame after time aligning all repetitions. Figures 6-8 (d) depict the standard deviation for each

point in each frame.

Figure 6 shows the tongue contour sequence for ’golly’. Figure 6(a) and (b) show that during

the transition from /A/ to /l/, the tongue’s maximum displacement shifts backward and the tip

elevates (contour 9-10). The maximum displacement shifts forward again for /i/. Figure 6(c)

shows a small average SD for most contours. The exception, number 15 has a 1.7 mm SD.

This value is explained in figure 6(d) by the large variance in the tongue root, due probably to

extrapolation error when extending the contour. The average SD for the entire contour sequence

was 0.97 mm.

The alignment of ’he taught’ presents a variant on this error pattern. Figure 7 (a) shows less

high-to-low variation than ’golly’, as expected. Figure 7(b) provides a clearer display of the exact

transition frames. For example frames 5-6 and 15-16 depict the very anterior displacement of the

two /t/’s, respectively. The last 12 frames are a pause. Figure 7(c) shows large variability at

frames 14-15. Figure 7(b) shows this is the transition from /O/ to /t /. This spike in variability

(SD=3.3mm) was larger than that expected from normal variability, suggesting a misalignment

due to a poor interpolation caused by the inadequate sampling rate of ultrasound. The back-vowel

to front-stop motion uses rapid tongue motions that cover a long distance, and the ultrasound

frame rate of 30 Hz under samples this motion. Multiple repetitions are likely to capture different

moments in time and increase variability. The phonemes in this word all use a relatively closed

vocal tract, therefore, its tongue movements are more likely due to local deformation (tongue

only) than global deformation (contributed by jaw opening), and would be less well aligned using

rigid body registration. The pause (frames 18-26) had a low variance (SD<1.5mm). In addition
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spikes in variability are seen at frames 5, 6, 8, and 11. Figure 7(d) suggests that the large average

SD’s seen in these frames are due to large local SD’s at the tongue tip. These are probably due

to contour extension errors, which can be eliminated during later data analysis and, therefore, of

little consequence.

The third data set, /i/-/A/, contained only one motion, which had large local and global

deformations, and a rapid motion from high-front to low-back tongue position. The within-vowel

variability was between that of ’golly’ and ’he taught’ (max SD=1.4 mm) with the larger SD’s

occurring near the transition. Figure 8(a) and (b) show this utterance is simpler than the other

two; the movement involves a single transition and long vowel steady states. Figure 8(c) shows

that the largest errors occurred at the vowel-to-vowel transition (Frame 6) as expected. A large

error is also observed in the middle of the /A/ (Frame 13). For this particular data set, frame

13 of the reference sequence (the longest repetition) was not time aligned with any frame of the

other sequences. Thus before averaging, frame 13 of each non-reference sequence was obtained by

interpolation to make sure that all sequences had the same number of contours. Errors introduced

during the interpolation in turn caused the large variation. The interpolation errors could be

reduced if the ultrasound frame rate were increased.

The three data sets contain large changes in temporal and spatial patterns for the tongue. These

are consistent with those found in speech. Variance up to 1.5 mm was typical in speech events and

pause. Variance above that amount appeared due to contour extension, and interpolation error.

The latter was usually caused by rapid tongue motion leading to ultrasound undersampling.

7 Conclusion

In this paper, a method to get the best representation of a speech motion from several repetitions is

presented. A set of contour sequences is first time aligned by a shape based Dynamic programming

method. The best representation of the speech is then obtained by averaging the time aligned

contours from different repetitions. This method has been tested on both synthetic and real data
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Figure 6: Results for ’golly’ in the upright position. Average standard deviation of real dis-
tance=0.97 mm. (a) is the average sequence shown in the XY-T space. The average XY-T
surface is also shown in the X-T plane in (b). Standard deviation of each frame is shown in (c).
The standard deviation of each sample point is shown in the X-T plane in (d).

sets. Variance above 1.5 mm is observed due to errors resulting from contour extension which we

used to get corresponding points of endpoints, and due to interpolation errors resulting primarily

from ultrasound undersampling.
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Figure 7: Results for ’he taught’ in the upright position. Average standard deviation of real
distance=1.43 mm. (a) is the average sequence shown in the XY-T space. The average XY-T
surface is also shown in the X-T plane in (b). Standard deviation of each frame is shown in (c).
The standard deviation of each sample point is shown in the X-T plane in (d).
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Figure 8: Results for ’ee’-’aa’. Average standard deviation of real distance=1.18 mm. (a) is the
average sequence shown in the XY-T space. The average XY-T surface is also shown in the X-T
plane in (b). Standard deviation of each frame is shown in (c). The standard deviation of each
sample point is shown in the X-T plane in (d).
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