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Summary. A mathematical model of the human tongue, developed as part of a
larger project to understand its movement, use in speech, and control, is described.
The model has the mathematical form of an incompressible solid with a nonlinear,
partially controllable, stress/strain relationship. The rationale for such a model, an
analytic solution for a simplified version of the model, and indications of future work
are included.

1 Introduction

The human tongue is an important component of the system that produces
intelligible speech. To understand speech production, it is necessary to under-
stand the dynamics and control of the tongue. There are several difficulties.
First, the tongue is enclosed in the mouth during speech, greatly compli-
cating the problem of obtaining accurate experimental data about its move-
ments. Second, the tongue is one of a small collection of biomechanical sys-
tems known as muscular hydrostats. Such systems—other examples are the
elephant’s trunk and the squid’s tentacles—are composed almost exclusively
of muscle and do not include any rigid structure for the muscles to act upon.

Muscles can only shorten as a result of their own activation. To lengthen,
a muscle must be acted upon by some force external to itself. In the case
of the tongue, or any other muscular hydrostat, this force is created by the
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interaction of other muscles within the tongue with the incompressibility of
the tongue. Thus, the control of the tongue depends on exploiting the dy-
namical interaction between the contraction of individual muscles and the in-
compressibility. To understand this quantitatively, it is necessary to describe
the tongue mathematically as an incompressible elastic structure that is con-
trolled by temporally varying the stress/strain relationship within subregions
of the overall structure. This article describes such a mathematical model of
the tongue and the squid tentacle.

Before describing our model, we present a brief survey of previous attempts
to model the tongue mathematically. We follow this with a demonstration
that a linear model of the tongue that enforces incompressibility by means of
a Poisson’s ratio close to 1/2 does not both replicate reasonable movements
of the tongue and satisfy the incompressibility constraint. We then give a new
mathematical model of the tongue. The model is designed to handle large de-
formations because experimental data shows that the tongue normally under-
goes large deformations. A crucial component of the model is a mathematical
model of mammalian striated muscle, which is described in the next section.
We conclude with a brief indication of the goals of this research and of the
next steps towards achieving these goals.

2 Background

The first attempt to create a mathematical model of the human tongue is gen-
erally acknowledged to be by Perkell in 1969 [11]. Perkell used interconnected
masses and springs to create a two-dimensional mathematical model of the
mid-sagittal plane of the tongue. Kiritani et al.[9] substantially improved upon
Perkell’s work by creating a three-dimensional finite element model. Their
model also included simple models of the lips and vocal tract and of tongue
contact. Improved models of the tongue were later developed by Hashimoto
and Suga in [7] and Sanguinetti et al. in 1997-1998 [12, 13]. At about the
same time, Payan and Perrier [10] developed a two-dimensional model of the
midsagittal plane of the tongue that included some geometrical nonlineari-
ties. Their model was based on the somewhat controversial equilibrium point
model of muscle. Dang and Honda [3] have continued and extended the devel-
opment of two-dimensional models by including 2cm of transverse thickness
in their essentially two-dimensional model. Their model was based on mea-
surements from volumetric MRI and the tongue, jaw, hyoid bone, and vocal
tract wall. However, their model was based on a mass-spring network that did
not fully account for continuum effects. More recently, they have improved
their model so that it includes the effects of Poisson’s ratio and produces a
“semicontinuum model” tissue model [4].

A somewhat different approach to the mathematical modelling of the
tongue has been the work of Wilhelms-Tricarico [15]. Wilhelms-Tricarico’s
approach to modelling has been to create very detailed models that attempt
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to include as much as is possible of the known elements of the tongue. The
models begin with a finite element grid that is tailored to the shapes of in-
dividual muscles within the tongue. A considerable amount of nonlinearity
is included. For example, the model includes the nonlinear force/length and
force/velocity relations for mammalian muscle developed by Zajac [16].

The reported aspects of virtually all of this work do not address the mathe-
matical issues associated with the models. In particular, the models are almost
always a single finite element approximation to the physical problem of de-
scribing the biomechanics of the tongue. Questions such as whether a refined
set of elements would improve the approximation cannot be addressed. Fur-
thermore, in almost all of these models, the finite element mesh is manually
created so as to conform to the placement of muscles in the model. The result-
ing mesh may not satisfy the regularity criteria needed for good finite element
computations. A notable exception is the recently developed finite element
model of Gerard et al. [6] in which the regularity issue is addressed. However,
it is still fair to say that the mathematical issues associated with models of
the tongue have mostly been ignored in the published literature.

3 Volume Changes

In many finite element models of the tongue, a value of Poisson’s ratio close
to one-half is used to model the incompressibility constraint. A common mea-
surement of how well incompressibility is enforced in this type of model is to
compute a relative change in the overall volume, e.g.,

Relative change in
global volume

=
Initial global volume − Deformed global volume

Initial global volume
∗ 100

If the relative change is small in absolute value then enforcement of incom-
pressibility in the model is considered to be acceptable.

However, incompressibility is a local phenomenon, and global volume
preservation does not imply local volume preservation. We propose a new
method for measuring incompressibility and present two examples where in-
compressibility appears to be accurately modelled when using the common
global measurement, but our new method indicates significant local changes
in volume.

Our new method for measuring incompressibility is to compute the relative
change in volume at the finite element (FE) level; that is, for each finite
element, compute

Relative change in
each FE volume

=
Initial FE volume − Deformed FE volume

Initial FE volume
∗ 100

Since there may be many finite elements, one may wish to save these in an
array. Using this measurement, we can determine the maximum and minimum
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percentage of relative changes in local volume. In particular, we can graph the
locations where these changes are above or below a threshold amount, and our
model is failing to enforce the incompressibility constraint. We also compute
a sum of the volume differences; e.g.,

Sum of

FE volume difference =
∑

FEs

|Initial FE volume − Deformed FE volume|

as an additional measurement tool.
Using our three-dimensional rectangular prism tongue model, we activated

the first section of superior longitudinalis (SL1) and genioglossus (GG1) as
shown in Figure 1. The relative change in global volume is .0488%; that is, the

a.

b.

a.

Fig. 1. a. Initial configuration with volume of 360 pixels2. b. Deformed tongue after
activating SL1 (.3) and GG1 (.2) with volume of 360.1759 pixels2.

overall volume increased slightly. Normally, this measurement would indicate
that the enforcement of incompressibility is good. Using our new method, we
find that the sum of the absolute values of volume differences in the finite
elements is .3534, and the relative local volume changes are between 1.4645%
and −1.0788% with the negative sign indicating a volume decrease. These
numbers show there are areas where the incompressibility constraint is not
being enforced.

In our second example, we activated the first section of genioglossus (GG1)
in our two-dimensional tongue model. The initial and deformed configurations
are almost identical as shown in Figure 2. The relative global volume change is
.028287%, which indicates a reasonably good enforcement of incompressibility.
However, the sum of the absolute values of finite element volume differences
is 1.2350, and the local relative volume changes are between −.1422% and
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a. b.

Fig. 2. a. The initial (dashed lines) and deformed (solid black lines) configurations
for tongue with GG1 (.2) activated. GG1 lies in the shaded area. b. The shaded areas
indicate local relative volume changes above .10% in absolute value. The darker areas
indicate volume increases while the lighter areas indicate reductions in volume.

.4795%. Figure 2 shows the locations where the incompressibility constraint
is not satisfied.

The above examples were chosen because the activation parameters ap-
pear to create small deformations that satisfy the incompressibility constraint.
However, on closer examination, there are regions within the deformed tongue
where the incompressibility constraint has not been satisfied.

In the above examples, we were careful to keep our activation parameters
small because the model used is a small deformation model. We also had to
activate only one or two muscle sections at a time because activating more
muscle sections even with very small parameters can result in large move-
ments. This result supports our belief that a linear small deformation model
cannot adequately model tongue movement. It is also interesting to note that
both our new methods and the common technique for measuring incompress-
ibility indicate the incompressibility constraint is not satisfied for these large
deformations. This indicates the incompressibility constraint needs to be ex-
plicitly included in the finite element model. We propose using a mixed formu-
lation [8] with both displacement and pressure finite elements to approximate
a solution that satisfies the incompressibility constraint.

4 Tongue model

The human tongue is incompressible and normally undergoes large defor-
mations. A mathematical model that accurately describes an incompressible
elastic structure that undergoes large deformations must be nonlinear. There
are many modelling and mathematical issues that simply do not arise in the
linear theory but are fundamental to the nonlinear theory. For example, the
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distinction between the material and spatial (Lagrangian and Eulerian) for-
mulations of the dynamics is largely irrelevant for small deformations, the case
described by linear models. In the case of large deformations, this distinction
is very important. In fact, there are strong arguments for using the material
formulation for the tongue model (Antman [1] p.ix). However, we do note that
the spatial formulation can be useful for some inverse problems ([1] p. 451).

Similarly, there are many choices for the strain tensor. All of them give
equivalent results in the linear case but this is not so in the nonlinear case.
The main driver of our choice of strain tensor was the principle of frame
indifference. This says that the stress/strain relationship of a material cannot
change when the material undergoes rigid motions ([1] p. 420 et seq.). This
principle implies that the stress/strain relationship should have a particular
form that depends primarily on the right Cauchy-Green deformation tensor
C(z, t).

With the above-mentioned conditions in mind, our tongue model takes
the following form. Let z denote a material point of the tongue belonging to
a set of points, B, in three dimensional space. Let p(z, t) denote the position
of material point z ⊂ B at time t. Then,

F = p
z

(1)

C = FT F (2)

where C is the previously mentioned right Cauchy-Green deformation ten-
sor, F is the deformation gradient, and the subscript indicates the partial
derivative. Then, the fundamental dynamical equation has the form.

5 · TT + f = p
tt

(3)

where T is the first Piola-Kirchoff stress tensor, f is the body force due to
gravity, the double subscript denotes the second partial derivative with respect
to t, and we have assumed the mass density of the tongue is a constant that
we normalize to one. The actual modelling of the tongue consists primarily of
specifying T in terms of F and C.

Because the tongue is nearly incompressible we describe it by an incom-
pressible model. This adds the condition

det C = 1 (4)

Incompressibility also imposes an important condition on the form of T . Pre-
cisely,

T (z, t) = F (z, t)(−pC−1(z, t) + ŜA(C(z, t), p, z)) (5)

Note that p without the underline denotes the pressure within the tongue,
which is generally a function of z and t. The definition of ŜA is really part
of the muscle model and will be given below. There is a further condition on
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ŜA that we give below. It is an additional component of the incompressibility
constraint,

tr(ŜAC−1) = 0 (6)

Equations (3-6) constitute an abstract mathematical description of the
tongue. At this level of abstraction, the equations characterize any incom-
pressible elastic structure in either two or three dimensions. In addition, a
model for a compressible elastic structure consists of Equations (3) and (5)
with p = 0. It is the muscle model and the specific choice of B that makes
these equations describe the tongue.

5 Muscle model

The new muscle model was driven by three mathematical issues in addition
to the obvious requirement that it fit the known physiological facts about
mammalian muscle. The model had to be convenient to use, satisfy the frame
indifference principle described earlier, and had to satisfy reasonable condi-
tions for existence and uniqueness of solutions when incorporated into the
overall tongue model. The resulting model is in two parts, the geometric de-
scription and the stress/strain characteristics.
a. Geometric description: Each muscle occupies a region of space, a subset
of the material points of the tongue. This set changes as the muscle moves.
We identify the muscle by the set of points, M ⊂ B , that it occupies in its
reference configuration. A muscle consists of fibers. We denote these fibers by
curves defined on M in its reference configuration. There is a unique fiber at
every point z ∈ M. We define the fibers as a family of offset curves [2]. That
is,
(i) A backbone curve, c(s), where s is the arc length along the backbone curve.
For muscle fibers, s can always be chosen to be a coordinate direction, z1 for
instance. (ii) At each point of the backbone curve, which we can identify by
s, there is a unit tangent vector, denoted by τ(s) and, in three dimensions,
a plane normal to the curve. Choose a pair of orthonormal basis vectors for
this perpendicular plane, say η

1
(s) and η

2
(s). Then every other muscle fiber

can be represented by an offset curve, o(s), defined by

o(s) = z01η
1
(s) + z02η

2
(s) (7)

for all z
01

and z
02

such that o(s) ∈ M. This form assumes the muscle fibers
are all parallel in the reference configuration. This is not true for Genioglossus
and Verticalis in the tongue. There is a simple generalization of Equation (7)
that allows us to represent such fan-shaped muscles. Let z

0i, i = 1, 2 depend
on s.
b. Stress/strain description: Our basic assumption is that the stress produced
by a muscle is aligned with the muscle fiber. Stress is described by a tensor
so the previous assumption describes one of the principle axes of the stress
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tensor. We also assume that the stress/strain relationship in the plane normal
to the muscle fiber is entirely passive elastic and independent of direction
within the plane. Because this passive elasticity is entirely due to collagen
fibers, which have no shear resistance, we assume there is no shear component.
These assumptions imply that the stress tensor for a muscle has the form

S(z, t) = diag(SA(z, t), SP (z, t), SP (z, t)) (8)

where S(z,t) is the second Piola-Kirchoff stress tensor. Note that the isolated
muscle fibers would also have stress resulting from the incompressibility of the
muscle. This is accounted for in the overall tongue model as a component of
the new tongue model (see Eqn. (4). We emphasize the alignment of S(z, t)
by noting that

S(z, t)τ(z, t) = SA(z, t)τ(z, t) (9)

and
S(z, t)η

i
(z, t) = SP (z, t)η

i
(z, t) (10)

for i = 1, 2. The stress actually depends on the deformation. The requirement
that this dependence be frame indifferent implies that SA(z, t) and SP (z, t)
can only depend on C(z, t), its derivatives, z, and t. The next step is to give
explicit expressions for SA(z, t) and SP (z, t). The passive elasticity is assumed
to be given by

SP (z, t) = −ŜP (
√

ηT (z, t)C(z, t)η(z, t)) (11)

for any unit vector, η(z, t) perpendicular to τ(z, t), the tangent vector to
the fiber. Note that we are assuming that any viscosity in the muscle can
be neglected. This is an assumption that is very commonly made and it is
certainly true for static problems and almost certainly true for simulations. It
may not be true for questions related to stability. The active stress, that is,
the stress produced by muscle activation, is assumed to be given by

SA(z, k(t), t) = −ŜA(
√

τT (z, t)C(z, t)τ(z, t),
√

τT (z, t)(∂C(z, t)/∂t)τ(z, t), z, k(t))

(12)
where k(t) is the control, 0 ≤ k(t) ≤ 1 i.e., the muscle activation.

Notice that ŜP is a scalar function of a scalar argument. It has the func-
tional form

ŜP (x) =

{

0, if x ≤ 1;

monotonic increasing to infinity if x > 1
(13)

ŜA is a scalar function of three scalar arguments. It has the functional
form

ŜA(x, y, k) = kfl(x)fv(y) + ŜP (x)
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Here, fl corresponds to the force-length curve of the Hill model and fv cor-
responds to the force velocity curve. Again, we impose the condition that
ŜA(x, y, k) is monotonic increasing in its first argument regardless of the other
arguments. This is a common assumption in using Hill’s model [16] because
the system can be unstable otherwise.

6 Muscle placement

The mathematical model of the tongue is not complete without a geometric
description of the tongue. In [14], Takemoto developed a three-dimensional
schemata of the musculature based on anatomical observations. In his work,
he identified five distinct strata of muscles and provided a description of the
muscle fiber locations within each stratum. Our geometric description is based
primarily on his work.

Some key issues in developing a geometric description of the tongue are
determining what muscles to include, identifying their location within the
tongue, and defining their initial direction or backbone curve. The tongue
has a complex musculature and is comprised of many muscles, both intrinsic
and extrinsic. Intrinsic muscles are muscles that originate and terminate in
the soft tissue within body of the tongue while extrinsic muscles originate
on structures outside the body, such as the jaw, insert into the tongue, and
terminate within the tongue body.

In his paper, Takemoto identified four intrinsic and four extrinsic muscles.
Our geometrical description includes the four intrinsic muscles: superior longi-
tudinalis (SL), inferior longitudinalis (IL), transverse (T), and verticalis (V).
These muscles compress the tongue in three directions: front-to-back (SL, IL),
top-to-bottom (V), and side-to-side (T). The longitudinal muscles also raise
and lower the tip. We also include two extrinsic muscles: genioglossus (GG)
and hyoglossus (HG) and are in the process of incorporating a third extrin-
sic muscle, styloglossus (SG), into the model, but this work is not completed.
For simplicity, we have chosen not to include the fourth muscle, palatoglossus.
The extrinsic muscles pull the tongue toward the muscle’s origin or attachment
location and deform the tongue according to their insertions. For example, ge-
nioglossus is a fan shaped muscle that originates at the jaw. Its fibers enter
along the center underbody of the tongue and extend upward terminating
along the entire upper tongue surface at midline and a few millimeters on
either side. Genioglossus pulls local regions toward the jaw forming midline
depressions and grooves.

A muscle is comprised of many individual muscle fibers, which have a cylin-
drical shape. Individual muscle fibers may extend from origin to insertion or
may be much shorter. These shorter fibers are either aligned in parallel, i.e.,
running end-to-end and side-by-side, or may be in-series with short muscle
fibers that overlap. The space in between the fibers contains an intricate col-
lagen network or mesh. While extrinsic muscles have a clearly defined starting
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point, the termination of these fibers as well as the origination and termination
of intrinsic muscle fibers are not as well defined. Takemoto’s dissections[14]
clearly indicate that the number of fibers from each muscle changes from slice
to slice. In addition, Takemoto identified two alternating laminae of muscle
fibers in the inner region or body of the tongue. These laminae were each
approximately one fiber thick. One of the lamina is composed of genioglossus
and verticalis muscle fibers while the other contains transverse fibers. For sim-
plicity, we assume each muscle has a clearly defined boundary and that each
muscle is homogeneous within that boundary, i.e. muscle fibers are evenly dis-
tributed. In particular, we assume all muscle fibers are aligned in parallel. We
further assume that an increase in the activation of a muscular region results
in an evenly distributed recruitment of fibers throughout the muscle location.
We have currently made no attempt to model the alternating lamina but plan
to study the effects of this muscle structure in future geometric descriptions
after we have identified the limitations of our simplifying assumptions.

We present a brief description of the muscle locations within our tongue
geometry. In order to define the tongue and individual muscle locations, we
use a coarse finite element structure. In the future, these definitions will be
independent of the finite element structure. SL is located within a thin region
extending along the top of the tongue from the tip to the base. Ferrari et al.[5]
hypothesized individual superior longitudinalis fibers, which have an in-series
configuration, can have differing activation levels along their length allow-
ing for independent movement regionally. In order to test this hypothesis, we
divided SL into six sections along its length, each with its own activation pa-
rameter. We are, of course, assuming that SL has such clear boundaries along
its length where independent muscle activation occurs. The shaded areas in
Figure 3 show the region containing SL and our divisions. IL lies symmetri-
cally on either side of the midsagittal plane and extends along the bottom of
the tongue body from the tip to the base as shown in Figure 3.

Fig. 3. The location of Inferior Longitudinalis is shown at the left and Superior
Longitudinalis at the right. Shading indicates independently controllable sections of
the muscle.
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T and V lie in the body of the tongue above IL. V lies symmetrically on
either side of a region containing the midsagittal plane while T crosses this
midsagittal region. We have divided T and V along their widths as shown
in Figure 4 to allow for independent activation. Activation of the full muscle
is achieved by choosing the same activation parameters for all of the shaded
regions.

Fig. 4. The location of Transversalis is shown at the left and Verticalis at the right.
Shading indicates independently controllable sections of the muscle.

As stated earlier, GG is a fan shaped muscle that is located in the mid-
sagittal plane and extends a few millimeters on either side. Its fibers originate
at the jaw and extend up into the region containing SL. We have divided
GG into five regions along its width to allow for independent activation as
shown in Figure 5. The last muscle in our current model, HG, originates at
the hyoid bone, extends upward on both sides of the tongue, and enters the
tongue laterally. The anterior fibers run upward and then forward remaining

Fig. 5. The location of Genioglossus is shown at the left and Hyoglossus at the
right. Shading indicates independently controllable sections of the muscle.
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below SL. The medial and posterior fibers run upward and then join with T
fibers. We have separated this muscle into three sections, one consisting of
the medial and posterior fibers, one with the upward portion of the anterior
fibers and the last with the forward portion of the anterior fibers as shown
in Figure 5. We are in the process of adding SG to our model. SG originates
at the styloid process of the temporal bone, extends downward and forward
partially intersecting with HG before entering the tongue. Once SG enters the
tongue, posterior fibers run downward toward the base, middle fibers merge
with T, and anterior fibers run forward along the sides of the tongue between
SL and IL.

7 Example

To illustrate the model and its application, consider the problem of elongat-
ing a two-dimensional tentacle. We assume the tentacle has two muscle fibers
through each material point. One fiber is vertical and the other horizontal.
We model incompressibility in two dimensions by requiring every infinitesimal
area to be constant, regardless of muscle activation. The basic idea is illus-
trated in Figure6 where the initial position is shown dotted and the desired
final position solid. We ignore gravity for simplicity.

Is it possible to control the muscle activation of this tentacle in such a
way as to cause it to move from its initial position to its final position while
maintaining its rectangular shape at all intermediate stages?

x


y


Fig. 6. A simple two-dimensional elongation of an abstract tentacle. Contracting
the vertical muscles should cause the height to decrease and the length to increase.

To answer this question, denote material points of the tentacle by z = [x y]T .
Let p(z, t) denote the position of material point z ⊂ {−1 ≤ x ≤ 1, 0 ≤ y ≤ 1}
at time t. Then,
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F = p
z

(14)

C = FT F (15)

where C is the previously mentioned right Cauchy-Green deformation tensor
and F is the deformation gradient and the subscript indicates the partial
derivative. A precise characterization of the desired movement of the tentacle
is

p(z, t) = [α−1(t)x α(t)y]T (16)

This makes

F (z, t) =

[

α−1(t) 0
0 α(t)

]

.

Then,

C(z, t) =

[

α−2(t) 0
0 α2(t)

]

. (17)

The incompressibility constraint is automatically satisfied by this C(z, t).
It is necessary to account for the effect of the constraint on the stresses.
Physically, the constraint supplies whatever stress is required to insure that
the constraint is satisfied. For a given z, the incompressibility constraint (4)
defines a two dimensional manifold in the three-dimensional inner product
space of symmetric 2 × 2 matrices. The inner product of two such matrices,
sayA and B is just tr(AB). An orthonormal basis for this space, aligned
with the tangent plane to the manifold, consists of the three matrices, B

1
=

C−1/
√

α4 + α−4,

B
2

=

[

α−2 0
0 −α2

]

/
√

α4 + α−4 (18)

and

B
3

=

[

0 1/
√

2

1/
√

2 0

]

We will enforce the constraint (6) by projecting the stress tensor onto the
tangent plane of the manifold.

The stress tensor is aligned with the muscle fibers. In this example, the
vertical muscle fibers stay vertical and straight throughout the movement
and the horizontal muscle fibers stay horizontal. A natural assumption is
that only the vertical fibers are activated so as to decrease the height with
minimum resistance from other forces. Activating the horizontal fibers would
only increase the needed stress. With these assumptions, the stress tensor
becomes

S(z, k(t), t) =

[

−(k(t)fl(α
−1(t))fv(dα−1(t)/dt) − ŜP (α−1(t))) 0

0 −ŜP (α(t))

]

(19)
where ŜP (α)is defined in (13).
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Taking the projection of S(z, k(t)) onto B
2

gives

ŜA(C(z, t), p, z, k(t)) = tr(S(z, k(t))B
2
)B

2
. (20)

Finally, Equation(5) becomes, explicitly,

T (z, k(t), t) = (
1√

α4 + α−4
)

([

−pα 0
0 −pα−1

]

+
α−2(k(t)fl(α

−1(t))fv(dα−1(t)/dt) + ŜP (α−1(t))) − α2ŜP (α(t))√
α4 + α−4

[

α−3 0
0 −α3

])

(21)
Note that p is given explicitly by the formula

p(z, t) = −tr(S(z, k(t), t)B
1
(z, t))

Inspection of the formula for T (z, k(t), t) shows that there is no dependence
on z. Hence, 5 · T T (z, k(t), t) must be 0. Thus, the hypothesized motion of
the tentacle is impossible if there is only a single open-loop control of vertical
muscle fibers. This would typically be true of muscles in the limbs. We believe
it is unlikely to be true for tongue and tentacle muscles.

Suppose we allow the control of the vertical muscle fibers to depend on
both the fiber and the position along its length. That is, the control is now
k(t, x, y). Choosing k(t, x, y) = k(t)(x2 + y2) and substituting this into the
equations above reduces the dynamics to a single nonlinear first-order differ-
ential equation in α(t) and k(t). We are currently investigating whether this
equation is solvable for some choice of k(t).

We have so far said nothing about boundary conditions. The most natural
boundary condition is that the component of stress perpendicular to the three
edges of the tentacle other than the one on the y-axis be zero. We allow
arbitrary vertical motion on the y-axis but zero horizontal motion. A more
standard way to achieve the same result is to regard the tentacle as the right
half of an object that is symmetric about the y-axis and has zero normal
stress on all its boundaries. This leads to a pair of equations that are linear
in p and k. Evaluation of the determinant shows the solution is unique for
α > 1 although the required k might not lie between 0 and 1. If we allow
cocontraction, i.e., both sets of muscles to be active, then we have two linear
equations in three unknowns and many solutions.

8 Further research

The main purpose of this research is to determine how the activity of the mus-
cles of the tongue controls its movements. Our collaborators have been using
tagged cine-MRI and ultrasound to provide the motions of individual points
within the tongue as well as lines on its surface. The data we already have
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is in two spatial dimensions. We, and they, expect to have three-dimensional
data shortly. Given this data, we have an obvious inverse problem—given the
movement of points within the tongue, compute the muscle activations that
produced this movement. One important biological issue is that the extent to
which individual muscle fibers can be independently controlled is unknown. In
the muscles of the limbs, for example, there is normally no reason to control
the shape; only the force needs to be controlled. Thus, fibers are recruited
for a task in strict order of their size and force producing capabilities. Much
more complicated recruitment strategies might be needed in the tongue, where
shape must be controlled. Moreover, there is no reason to separately control
different fibers that are connected in series. In the tongue, subtle control of
the shape could require separate control of series connected fibers. Mathemat-
ical questions, such as whether a solution to the inverse problem exists and is
unique can provide great insight into these, and other, issues in the control of
the tongue.
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