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This paper discusses methods for reconstructing the tongue from sparse data sets. Sixty ultrasound
slices already have been used to reconstruct three-dimensg&idlatongue surface shapgStone

and Lundberg, J. Acoust. Soc. ABB, 3728—-37371996]. To reconstruct 3D surfaces, particularly

in motion, collecting 60 slices would be impractical, and possibly unnecessary. The goal of this
study was to select a sparse set of slices that would best reconstruct the 18 measured speech sounds.
First a coronal sparse set was calculated from 3D surface reconstructions. Selection of contours was
globally optimized using coarse to fine search. Sparse and dense reconstructions were compared
using maximum error, standard deviation error, and surface coverage. For all speech sounds,
maximum error was less than 1.5 mm, standard deviation error was less than 0.32 mm, and average
reconstruction coverage was 80%. To generalize the method across subjects, optimal slice locations
were calculated from only the midsagittal contour. Six midsagittal points were optimized to
reconstruct the midsagittal contour. Corresponding coronal slices were then used to reconstruct 3D
surfaces. For data collection planning, a midsagittal sample can be collected first and optimal
coronal slices can be determined from it. Errors and reconstruction coverage from the midsagittal
source set were comparable to the optimized coronal sparse set. These sparse surfaces reconstructed
static 3D surfaces, and should be usable for motion sequences as welD9®Acoustical Society

of America.[S0001-49689)03610-3

PACS numbers: 43.70.JAL ]

INTRODUCTION of tongue surface representation and maintains highly accu-
rate reproduction of local deformation features. This modifi-
Ultrasound imaging has been used to represent tongugtion is an essential step if multi-plane tongue movements
positions for over 15 yearSonieset al, 1981; Keller and  are to be reconstructed practically into tongue surface move-
Ostry, 1983; Stonet al, 1983. Like other imaging systems, ments. Ultrasound has been shown to be a useful tool for
it provides a 2D measurement of the tongue surface contop|lecting 3D tongue surface data. It is noninvasive, has no
in a single plangsuch as midsagittal, coronal, or oblique exposure limits, and is relatively inexpensiV&20 000
One strength of ultrasound is that it images tongue contougsp.
movement using a fairly rapid frame re@0 Hz). Another is In previous research, a series of 2D images was used for
that contours from several spatial planes can be reconstructegconstructing a detailed 3D view of the tongue surface
into 3D surfacegStone and Lundberg, 1996However, as (stone and Lundberg, 1986This required a special trans-
ultrasound collects 2D slices, the subject must repeat thgycer, however, which collected 60 slices in a polar sweep of
speech corpus once for each desired slice. Also, both corsg degrees in 10 s. While this was feasible for a 3D static
tours and surfaces are represented by many points. Thugpeech sample, this method is too slow for 4D data collection
compact quantification of mc.)vem.ent is difficult in the case of(3D surfaces moving in time As there are not yet any 3D
contours and even more difficult in the case of surfaces. Twyirasound devices that simultaneously collect multiple 2D
improvements of the ultrasound technique would radicallygjices in motion, any 4D sample would need to be repetited

increase its usefulness: reduced dimensionality of a tongugyes (where N is the number of slices to be used in the
contour or surface, and accurate representation of S“rfa%constructioh

motion. Prior research has accurately represented static 3D The motion of three-dimensional tongue surfaces is of

tongue surface shapes from dense data sets of ultrasoufiferest hecause the tongue is a complex system that is criti-
images(Stone and Lundberg, 1986The present paper pre- c5| in speaking, swallowing, and breathing. The tongue is a
sents methodology to accurately represent static 3D 1ONgUG, | me preserving, deformable object. That is, tongue shape
surface shapes and motion from sparse data sets of ultrgs gystematically related to tongue position, because tongue
sound images. The method also reduces the dimensionalityy | yme can be redistributed, but not increased or decreased.
Complicated tongue surface shapes can be produced in 2D
dElectronic mail: lundberg@cs.jhu.edu and 3D due to the complex distribution of the tongue’s
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muscles and its lack of bony tissier and Smith, 1986  were studied: /i/,1/, lel, kl [/, lal, Ial, Idl, [ol, lul, Iul, i,
The intrinsic muscles originate and insert on soft tissue; thés/, /0/, /f/, Is/, /\l, In/, h/. The subject sustained each pho-
extrinsic muscles also insert on soft tissue, thus insuring deaeme for 10 s while 60 slices were collected. The data was
formation with every movement. Contracting various collected with the subject lying on her back because the 3D
muscles and contacting the palate allows complicated shap#&®nsducer required a non-upright position for clear images
to be made. Subtle changes in these shapes reflect differen@ue to a fluid bubble within the transducer head that would
due to coarticulatioriStone and Lele, 1992dialect and lan-  obscure ultrasound when the transducer was in an upright
guage(Stone and Yeni-Komshian, 1991and speech disor- position. Complete recording procedures and subject infor-
ders(Stone, 1995 In order to capture subtle shape changesnation can be found in Stone and Lundbét§96. In addi-
due to these factors, especially over time, accurate tonguon, for this experiment, several additional tongue surfaces
surface representation is essential. were collected. For validation of the reconstruction proce-
The present study used the database acquired in Stomkires the vowelat/ was collected twice using sagittal and
and Lundberg(1996 to determine a minimal number, or coronal slices. To study variability the sound /I/ was col-
sparse set, of coronal slices needed for reasonable recolected twice, once with a normal articulation, and once push-
structions. The specific coronal slices to collect must béang the tongue tip into the palate to induce variability.
specified, as well as what error tolerances define a reasonable
reconstruction. Earlier workMiyawaki et al, 1975; Stone,
1990 suggested that 3D tongue surface shape could be a@- Validation of dense data set

equately specified using five lengthwise se_gments. There- Prior to determining an optimal sparse source set for the
fore, although many sparse sets of coronal slices were teSteﬁiD reconstructions, validation of the dense data sets was

five sI:jcets were S)t/potlhes;ﬁed to ?e optlmtal. In fact,t3|x SllcesEerformed to guarantee the accuracy of the origidehse
were determined o give the most accurate compact repréS€lis s reconstructions. Further validation was performed on

tation, as discussed below. the reconstruction method beyond the original phantom re-

h While real-t|.me 3D| ulltrasoun((dj devices dohnot yet I‘.afx'sﬁconstruction of a known surface done in Stone and Lundberg
there are experimental ultrasound systems that simplify t 996. Data collection and reconstructions of the tongue

data collection of multiple static 2[.) slices. These approachg rface were done from the coronal and sagittal dense data
use a 2D ultrasound transducer with an automated 3D Spalighg for /. The first collection was done with the 60 slices

positioning ;ystem. One system is the scanning 3D transc')riented in the coronal direction. For the second data set, the
ducer used in Stone and Lundbe(rpoQ, which mte_rnally transducer was rotated 90 degrees so that the 60 slices were
MOVes a 2b transducer through a ra@al SpekEpUStic Im- oriented in the sagittal direction. Surface reconstruction was
aging Inc., Phoemx_,_AZ The second is a holder that exter- performed on each data set, and they were overlaid in 3D
nally rotates a traditional 2D transdud@fomtec Inc., Den- space to find the best fit in terms of overlap and minimal

ver, CO. The first is static; the second allows time-varying error(measured as the 3D distance between surface points on

data tot betczllegt?ﬁl mdc:pendenl'?ly ?t set"e%a(; 5'|'Ces an?l éhetﬂe data sels |t should be noted that this error would include
reconstructed. Both systems coflect up 1o planes o atfhe normal variability between repeated tokens of the same
and use computer control to position the transducer, but th honeme. For the coronal and sagittal /data, the maxi-

cqmm_erual reconstruction algorlt_hms are quite poar, N%um error achieved was 2.6 mm, with a standard deviation
slices in planes, other than the original, are very unrealistic

error of 1.16 mm, and 86% overlap of the two data $ste
Moreover, measurement of 60 tongue planes at 30 frames pgfy 4, Figure 1 shows the reconstructed /surfaces from

second is unrealistically time consuming and unnecessarilxoronal(left) and sagittalright) slice sets and a set of dis-

dense spatlally.. . . . tance vectorgbottom comparing the two surfaces. The dis-
An alternative method, data-driven slice selection, cal-

. . tance vector image is a set of vectors from the fitsft)
culates from subject data an optimal sparse source set O constructed surface to the secofiight) surface. The

corortlal tsllgesF fro;r;f Whlcrtlhredasonabli 3D ”surfatc?s dc?n bF‘ength of any vector corresponds to the 3D distance between
constructed. For this method, an externally rotated ranSy,q o) faces at that poifthe orientation of the vectors is not

;j_u_cert, for ivsn datmanlLljalli( pos_:_t;]onedt systﬁm,tv(;/otuldf be 455’ necessarily in the direction of the shortest 3D distance be-
icient for ata collection. Thus, to collect data for tween the surfaces

reconstructions, one would do multiple data collections of These intersurface differences were largely due to dif-
goronal tongue image sequences at a few specific ori(_entz?é ences in measurement errors that occur in coronal and
tions. The separate 'mage sequences W.OUId then b.e al'gngégittal tongue contours when using ultrasound. Tissue edges
|n_3D space from t.helr rgspectlve pollgctlgn orientations. Inbecome difficult to measure whenever the surface is oblique
Fh|s paper, data-dnve.n slice selection is S|mul_at¢d by sele% the ultrasound beam. This is most problematic for sagittal

INg a sparse set of sllcgs frgm the already existing dense s ages when the tongue surface is grooved, and a sagittal
of coronal slices described in Stone and Lundb@@s6. contour may lie entirely along the descending slope of the

|. METHODS groove. In the coronal plane, this is most problematic in the
tongue root, where the entire contour may be oblique to the
ultrasound beam. In general, one can recover a groove more

The subject was a 26-year-old white female with a Bal-easily from a coronal scan, and one can measure more of the
timore Maryland accent. Nineteen English speech soundngue root on sagittal scans.

A. Subject and speech materials
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and 96% overlap. The maximum error was greater than the
error induced by using sparse reconstructions.

C. Determining an optimal sparse source set

For the dense data sets, tongue surfaces were recon-
structed as a b-spline surface that interpolated the dense set
of coronal tongue surface contou¢Stone and Lundberg,
1996. As tongue surfaces are fairly smooth, particularly be-
tween the measured contours of the dense data set, a b-spline
surface is a sufficient model. For the sparse data sets, tongue
surfaces were similarly reconstructed by defining the
DI e b-spline surface that most smoothly interpolated the few
AR coronal tongue surface contouimeasured from ultrasound

" slice images Tongue surfaces are simple enough to be re-
W“ constructed by a small set of coronal contours by this
method, but the position of these coronal slices becomes im-
portant. For example, for an arched surface the coronal slices
must be selected near the point of maximal curvature and
Seale inmm displacement. If inappropriate coronal contours are used to
s Ofs 1_'0 reconstruct the tongue, the resulting surface r&ywors})
intersect the true surface only along those contours, and may
front be of a significantly different shape. Selection of a reason-
able set of coronal contours is critical to sparse reconstruc-
tion of the tongue.

A sparse reconstruction contains just a few coronal

slices from the dense set of 60 coronal slices, so there are

For comparison, and to test measurement repeatabiliyfn@ny Possible sparse sets one could collect. In fact, the
the same judge twice measured thé durface of a single d€nse data set can be considered to be 56 slices, as none of
coronal ultrasound imagésee Fig. 2 A year had passed the speech sounds had measurable data beyond the 55th slice
between the two measurements of the images. The error dié"d slice numbering starts at(6ee Fig. 3 We considered

tance between the two reconstructed surfaces had a ma)gelecting six slices because this was in fact determined to be
mum error of 1.84 mm, standard deviation error of 0.32 mm(h& most appropriate choice for balancing data collection
constraints and reconstruction accurdege Fig. 4 There

were then 56 choose[6 selected from 56 without regard to
selection order56!/(6!(56—6)!)], or about 32 million
possible sets of six coronal slices. The optimal slice set had
to be defined globally for all 19 speech sounds, even though
each sound had a different optimal set, because the trans-
ducer is fixed during actual speech production. There were
two desirable properties used in defining an optimal sparse
reconstruction. The first was maximal reconstruction cover-
age, i.e., the ratio of the tongue surface measured in the
dense set of tongue slices that was covered by the sparse set.
The second was minimizing error.

/&l comparison of coronal & sagittal reconstructions
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FIG. 1. Reconstructions of coronat/ surface(left) and sagittala/ surface
(right) and distance vectors showing the distances between them.

/a/ reconstructions for testing measurement repeatability 1 R econstru Ctl on covera g e
Distance
e e 32mm ; As the tongue moved forward and back in the mouth

Coverage 96% area overlap

during speech, the first and last measurable coronal images
(for a fixed dense set of radial imagegried widely (see
Fig. 3). Loss of the front slices) occurred when the tongue
P was pulled back and up, creating a sublingual air cavity. In
Lo the back, limits on measurable slices were not from tongue
-1.0-05 05 10 position, but from reduced image clarity caused by the in-
creasingly oblique orientation of the tongue surface to the
ultrasound beantwhich varied in different tongue surfaces
FIG. 2. Two reconstructions of am// measured twice from the coronal and speech S_()L_Jﬂ)iSThQ sound /if exempllf_les both these
images to test measurement repeatability and the distance vector surfaB¥oblems, as /i/ is the highest of the front raised vowels, and
between them. is also very oblique and difficult to measure in the back.
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s U maximum coveragésee Fig. 4. The benefit gained from
E.’_ increasing the number of slices diminished beyond six slices.
u A second consideration was the practical limitations of real
X speech data collection. Using current ultrasound instruments,
the subject must repeat the speech corpus once for each slice,
3 as they are collected independently. Therefore, fewer slices
are preferred. The third consideration was a prior indication
0 that a large reduction in the number of slices was feasible
S (Stone, 199D Based on these three considerations and the
data in Fig. 4, six-slice sets were optimized.
S
1
n 2. Error analysis of the six-slice set
1 The second property desired in an optimal reconstruc-

tion was minimal error. Sparse sets of six slices were opti-
mized for minimum error. Reconstruction of the tongue sur-
face from a sparse set of slices was identical to the method
FIG. 3. The range of measurable slices for each of the data sets and verticBdr reconstructing from a dense data set. An interpolating
lines showing the locations of the six-point optimal sparse source set oh-spline surface was fit to the set of surface data points. For
coronal slices. the sparse data set from six coronal slices, this had the effect
of simplifying the reconstructed surfaces along the sagittal

Each of the speech sounds had a specific range of meaxis. The resulting tongue surfaces were smoother, and
surable surface contours within the 60-degree 3D sector. Fanight lose detail. To measure the errors induced by this data
any speech sound, if the extremes of that measurable rangeduction, the dense reconstruction was compared to the
are in the sparse data set, the sparse reconstruction of thegtarse one. To do this, a regularly spaced 2D grid of vertical
speech sound will cover the full 3D sector range that a densknes (about one 1-mm spacingvas intersected with the
data set covered. If the extreme measurable slices are ntiingue surface. A large enough grid was selected so that all
part of the sparse set, the sparse reconstruction will be trurithe tongue surfaces in the data set were covered. These in-
cated at the most extreme slice that does lie within its meatersections gave a regularly spaced set of tongue surface
surable range. Reconstruction coverage is the area ratio pbints from the dense reconstructions. For each grid point in
the sparse reconstruction over the dense reconstruction. Ake dense data set reconstruction, the closest surface point
the coronal slices were collected in a polar sweep, the recorwas found for the sparse reconstruction. The 3D distances
struction coverage can be estimated by the degree range cavetween these point sets over all points gave a set of errors.
ered by the measurable slices of the sparse set divided by tifom these, maximum and standard deviation errors mea-
range covered by all measurable slices for any specifisured in millimeters were determined for each of 19 tongue
sound. For example, for /i/ only four of the six slices fell surfacegcorresponding to 19 different static speech sounds
within the measurable surfa¢see Fig. 3, so its reconstruc- The 3D distances were used as a distance measure, as purely
tion coverage is 25 degrees/31 degrees. vertical error measures would exaggerate the distances for

In order for a 3D reconstruction to be useful it should oblique areas of the surface. In contrast, 3D error distances
cover as much of the tongue as possible. Therefore, sparsge measured in a direction normal to the surfaces in all
sets containing from two to nine-slices were optimized forareas.

degrees
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TABLE I. Reconstruction errors resulting from sparse reconstructions based on different optimizations. No optirthN@i®mefers to simply taking an
equidistant spacing of slices over the full range of the data. Errors reported are for 3D error measured over the surfaces of the 19 speech ¢donds, excep
the six-point set.

Average Maximum Standard deviation Error cost max+s.d.
Optimization Selected slices error error error Coverage +[2X (1-coweragef]
None (011223344 5p 0.37 2.66 0.53 0.79 421
Six-slice set (0816243338 0.23 1.42 0.32 0.82 2.63
Six-point set (31018243238 0.21 1.40 0.29 0.80 2.67
Six-point set (31018243238 0.20" 0.8% 0.27 0.8C" 2.06'
% rrors measured for the midsagittal contour only.
3. Optimization of global error cost of one another. For creating sparse data sets, it is highly

To select a set of optimal sparse coronal slices, optimaIUn”kely that such data sets will be optim@ver the total

ity was defined as minimizing the error cost function: range of 56- degrees so the use of the coarse to fine
method should be very reasonable.

error cosEmaximum errotts.d. error The optimal sparse coronal set, for all 19 sounds, re-
1) sulted in an average error of 0.25 mm, a standard deviation
of 0.33 mm, a maximum error of 1.47 mm, and 84% cover-
In addition to this cost function, sparse sets covering an avage of the dense data sets. Due to the variability in length of
erage of less than 0.66 of the 19 speech sound set wetgngue surfaces the maximal reconstruction coverage pos-
eliminated from consideration to prevent the optimizationsible for any six-slice set would be 90%ee Fig. 4 As
from being skewed by outlying maximum errors. The con-yltrasound has a measurement error around 0.5 mm, the
stant 2 in the error cost equation balances the optimizatiogparse data set was a very good approximation. This indi-
between the goals of minimizing error and maximizing cov-cated that accurate reconstructions could be made from time-

erage. Some balance is necessary because simply maximizarying ultrasound with as few as six slices the appropri-
ing coverage results in high surface err@esger errors than  ate positions

the default equidistant errors in Tablg &nd optimizing for
error only would result in shrinking the sparse surface top. Optimizing source sets for individual subjects
consecutive slices one degree apart. For all subjects pre-

sented in this paper, the value 2 worked well for both sagittal _These data §ets ?r?d analyses were based on a, single
subject, so there is legitimate concern that any subject’s op-

contour and 3D surface optimizations. Evaluation of the er- | £ will based on fact f h
ror cost for any slice set required a sparse reconstruction fgima Sparse source set witl vary based on faclors of speec
oduction, subject size, or the surrounding vocal tract shape.

each of the speech sounds. A brute force search of the E%r Id be foolish and i tical to do a d 3D
million possible sets would require roughly a year of pro- would be Toolish and impractical 1o do a dense recon-

cessing time. Thus, a search was needed that could give's:éructlon of each subject simply to find the best sparse slices.

fast approximation to the global optimum. A coarse to fine or this reason, a simpler method for estlmatmg optimal
method was used to first get a rough estimation of the globéﬁparse source sets was sought. Instead of measuring the error

optimum, and then refine that estimation. To do this, the":_the e?tlre 3D surface recogstrlljct_|ort1hfr02n|13a s_garsgttC(l)ronal
method tests all possible six-slice sets with the restrictiorp oo SCh EITOr was measured only in the rmidsagittal con-

that only every fourth possible slice from the dense set i our reconstruction from a sparse midsagittal point data set.
considered. This is equivalent to finding the best sparse r n effect, this would concentrate on the midsagittal slice, and

construction from a set of coronal slices space 4 degre erform the same apalysis as finding _the best set of slices but
apart. So, at this most coarse level, there are only 564 in only two dlmenspns. This was §|mulate(_j on the dense
gata set by extracting the midsagittal profiles for the 19
peech sounds, and determining the optimal set of points
eeded to best reconstruct the global set of profiles. The

+[2X (1—reconstruction coverayg.

possibilities can be tested. After determining this coarse ste

optimum, six-slice sets at a finer level are tested. Now re-

stricted to every second slice, all possible six-slice Setgo_rotnal slices corkreslpon:jmg tto t;he opt;mz:l dmt;dstz:]glttglla
within a single size 2-degree step are considered. In othdf0!N's Were remarkably close lo those selected by the

words, at each slice position, consider the slice 2 degree%ndalys'g' Usflng them as thbe tsplarse set.resulte((jj in slightly
before, the current slice, and the slice 2 degrees after, angauced surtace coverage, but also gave improved error mea-

choose the best permutation across all six slices. Thus, sgurements particularly at midiine.
lecting from three slices at six positions give$=3729 per- I RESULTS

mutations to consider. The best of these permutations is theri
refined by the same process, using a step size of 1 degree, to The goal of this study was to reduce the representation
give a global optimum approximation. This coarse to fineof the tongue surface to a few key slidgé®., optimal sparse
method is much faster than considering the full range ofource slices These slices had to reconstruct 3D tongue
permutations. It considers 300329+ 729=4461 rather surfaces with the highest accuracy possible. If this step was
than 32 million possibilities. The possibilities it does not accomplished adequately, the procedure could be developed
consider are those where multiple slices are within 4 degredsirther to collect time varying data at each slice for use in 4D
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TABLE II. Errors in 3D reconstructions based on the optimizations of six coronal slices and six midsaggital points.

6 slices 6 points
Average Maximum Standard deviation Average Maximum Standard deviation
Sound error error error Coverage error error error Coverage
i 0.37 1.42 0.48 0.97 0.32 1.37 0.44 0.90
1 0.17 0.88 0.22 0.70 0.17 1.03 0.23 0.65
e 0.16 0.82 0.21 0.75 0.15 0.51 0.20 0.70
€ 0.23 1.34 0.31 0.88 0.26 1.40 0.32 0.81
@ 0.26 0.77 0.28 0.94 0.19 0.72 0.25 0.83
a 0.19 0.79 0.25 0.93 0.21 1.06 0.28 0.85
A 0.42 1.42 0.52 0.97 0.31 1.18 0.40 0.85
2 0.32 1.20 0.41 0.73 0.28 1.29 0.36 0.93
o] 0.16 0.74 0.21 0.83 0.18 0.70 0.24 0.73
U 0.20 0.89 0.29 0.81 0.12 0.49 0.15 0.95
u 0.21 0.86 0.27 0.63 0.17 1.14 0.24 0.80
3 0.38 1.38 0.50 0.80 0.20 1.06 0.27 0.90
3 0.14 0.53 0.17 0.91 0.21 0.79 0.28 0.83
0 0.15 0.83 0.20 0.83 0.15 0.60 0.19 0.76
f 0.32 1.24 0.42 0.73 0.29 0.99 0.36 0.68
S 0.18 0.64 0.22 0.92 0.16 0.52 0.20 0.81
| 0.22 1.07 0.30 0.61 0.24 0.90 0.30 0.57
n 0.20 1.38 0.30 0.86 0.19 1.14 0.27 0.80
| 0.22 0.86 0.29 0.88 0.27 0.84 0.34 0.82
Range 0.14-0.42 0.64-1.42 0.17-0.52 0.61-0.97 0.12-0.31 0.49-1.40 0.12-0.44 0.57-0.95

reconstructionsx,y,z,J. Two sparse source sets were consid-coronal dense data setfig. 1). This would indicate that
ered. The first was the set of six coronal slices optimizechuman error in edge detection would be the primary source
from all the coronal slices of the 56-slice dense(kereafter of error in sparse reconstructions. Concurrent with the
called the six-slice st The second set was the six coronal present study, a new and automated edge detection system is
slices corresponding to the midsagittal points optimized foibeing developed that should improve measurement reliabil-
reconstructing the midsagittal profildhereafter called the ity.
six-point sel.

B. Preservation of local features

A. Global characteristics of the reconstructions In addition to global statistical error measurement, four

For each of the sparse sets, global measures of recofifocal” features were considered: left-to-right asymmetry,
struction accuracy were calculated. Table | shows the optiabrupt changes in slope, local surface depressions, and the
mal six-point and six-slice sets with their global reconstruc-constriction location in fricatives. Visual inspection of the
tion errors. Maximum error, standard deviation error, surfacelense reconstructions indicate that depressions and abrupt
coverage, and the resulting cost function were calculated fothanges in slope were most evident in the midsagittal plane
the entire set of surfaces. The results indicated that the begStone and Lundberg, 1996; Figs. 4—Breservation of these
optimal sparse source was the six-point set. Surface coveragwo features in the sparse reconstructions was enhanced by
was degraded from the six-slice set optimum and error wasptimizing slice selection in the midsagittal plane. A source
improved. Use of midsagittal points as a source set tended et determined by midsagittal points cannot account for left/
produce better reconstructed surfaces than the coronal set, fiight differences in shape or motion. In these data sets asym-
many cases, because midsagittal points focused the optimretry was least well represented. If the selected slices passed
zation algorithm on midsagittal features. Thus local depresthrough maximally asymmetric regions, the length of the
sions, or “dimples,” as seen in /lI/ and/, and steep slopes, asymmetry would be overestimated. If the slices missed the
as seen in /il andsf/, were better captured using the midsag-areas of maximal asymmetry, the degree of asymmetry
ittal source sets. Larger error was seen instead at the swvould be underestimated. The most asymmetrical tongue
faces’ extreme edgeshe least important areaand also in  shape in the data set was /i/f where the maximum error was
areas of left-to-right asymmetry, as midsagittal optimization1.37 mm.
ignores and thus may diminish asymmetries. Errors for indi-  The second and most easily resolved local feature was
vidual sounds are shown in Table Il. The six-point recon-the local dimple seen in low back vowels and(tone and
structions had smaller average errors than the six-slice recohundberg, 1996; Figs. 5 and).6The use of the five- and
structions for 11 of the 19 sounds; maximum error wassix-point sparse sets instead of the coronal sparse set greatly
smaller for 13 of the sounds, including all the consonantsimproved resolution of centrally occurring depressions in the
Coverage was improved in only four cases. The sparse r&8D surfaces, as they were key features in the midsagittal
constructions were also more accurate than repeated meprofile as well. Figure 5 compares the dimple in the dense
surements of a framé=ig. 2) or comparing sagittal versus and sparse surfaces for /I/.
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midline tongue features. Therefore, particular attention was
paid to the error in the three fricative®///s/, and §I. Table
Il shows the maximum error for each sound. F6f the
maximum error 0.60 occurred laterally, though not at the
edges. Maximum error was 0.2 mm at the constriction. Elec-
tropalatographyEPG data confirmed the subjects constric-
tion locations(see Stone and Lundberg, 199Bor the /s/ the
largest error was 0.5 mm and occurred at the edge. At the
constriction, the largest error was 0.3 mm. Tké @nd /s/
shapes were actually fairly easy to predict from a sparse set
because the tongue shape did not change dramatically from
front to back. Thef/ had a more changeable surface shape
P s iies and had larger average and maximum errors. The largest
e error, 0.99 mm, occurred laterally. Several errors of 0.7 mm
did appear in the constriction region slightly off the midsag-
ittal plane. In the constriction region, the sparse data set was
below the dense data set, which overestimated the channel
size.

A"

[T TR

’- l"‘”“!. ——

M comparison of dense and sparse reconstructions

Scale in mm . -
o ! C. Variability

-1.0-0.5 0.5 1.0

Intrasubject variation occurs because humans do not say
FIG. 5. Reconstructions from a dense set of sligeft), and from a six-slice ~ an utterance exactly the same way every time. Phoneme pro-
set(right) for /I/ and the distance vector surface between them. duction varies slightly from repetition to repetition. Intra-

subject variation could not be seen in these single utterances.

The third local feature was abrupt change in slope. Thi€One example of variation was contrived, however. The pho-
feature was particularly evident for /i/ which had an arched"€me /I/ was repeated twice by the subject with the goal of
tongue in the front, and abruptly became grooved in thefréating two different shapes. The flrstlll,lwgs produced
back. In addition, the measurable tongue surface was verfyormally. The second, JI, was produced with a forceful
short. The six-point set resulted in four measurable slices fogPical contact. Both were sustained about 10 s. The two
even the shortest tongue surfaces, and captured the groo/&§igue surfaces were measured and reconstructed using the
very accurately. Figure 6 shows good representation ofamMe procedure as in Figs. 5 and 6. In the /I/ comparison,
abrupt slope changes and deep groove in /il. however, the two surfaces were dense reconstructions of dif-

The fourth local feature was the location of fricative ferent repetitiongsee Fig. 7. We were interested in what
constrictions. Fricative constructions in English often occurc@uses the midsagittal depression often seen just behind the

slightly off midline. Moreover, they may not be marked by tongue blade in /I/. It was hypothesized that the more force-
ful apical contact would create a larger deformation fef /I

the more extreme or “tense” production. Therefore, the /I
would have a deeper depression thar./This was found to
be true. The lower left portion of Fig. 7 shows the two
tongues spatially aligned and superimposed. Thetdngue
is higher than /l/ in back and on the sides, and lower in the
depression region. The depression depths were 2 mmyfor /1
and 4 mm for /}/, at the deepest point relative to the highest
point in the same coronal slice. The important features, the
dimples, differed across the repetitions by 2 mm, larger than
the maximal error for sparse reconstructions. This number
/ should be accurate since it occurred in the midsagittal region
P where we generally expect smaller reconstruction errors.
— Intersubject variation occurs because humans have
s o ke TN slightly different oral morphologies and use different strate-
CoRmpSaoE gies for creating speech gestures. Table Il presents midsag-
ittal optimization data from 17 additional subjects. Four
speech sounds were collected for each of these subjexts: /
lal, lil, and /ul. The best six-point sparse gaptimal selec-
o tions) is compared to the equidistant six-point sparsgdet
Lo fault selections The optimized selections column presents
:1.0-05 050 the optimized range of slices. This makes it clear that across
subjects there existed a variety of tongue lengths and feature
FIG. _6. Recon_structions from a dense set of sliteft), and from a six-slice  |gcations. Smaller ranges were caused by two things: tongues
set(right) for /i/ and the distance vector surface between them. . 8 .
that had incomplete data at one end or the other; and little
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/1/ comparison of dense reconstructions with variability in production

Distance
maximum = 1.63mm
standard deviation = 0.76mm
Coverage 84% area overlap

Scale in mm

v i FIG. 8. Sagittal contours of the tongue for subject 7 showing radial lines
indicating the defaultdashed and optimal(solid) point sets and their inter-
sections with the four speech sounds.

P
-1.0-0.5 0.5 1.0

FIG. 7. Reconstructions of dense sets from two distinct productions of /I/
(normal and tenseto show intrasubject variability, the distance vectors ) ) . .
between them, and, on the lower left, the two surfaces superimposed in thetlistant point set selected points 6 degrees apart with an over-

best alignment. The black surfac_:e is for normal productiopy, /and the  gJ| tongue length of 30 degrees. After optimization, her
gray surface is for tense production, /| tongue length was 25 degrees, and her interpoint distances
were 5, 4, 4, 5, and 8 degrees apart, indicating a greater
anterior-to-posterior differences among sounds. Differentepresentation in the anterior tongue. Figure 8 shows the four
starting and ending slices among subjects, e.g., subject Bwel contours and the optimized points for subject 7 as
versus subject 16, reflect rotational differences in positioningadial trajectories. With these modifications in point location
the transducer, not true position differences. The primaryor this subject, the average error decreased from 0.52 to
subject is the subject used in the rest of the paper. 0.28, the maximum error decreased from 2.42 to 1.04 mm,
Table 11l shows that for 11 of the 17 subjects the opti- and the standard deviation decreased from 0.68 to 0.37. The
mization reduced the maximum error by at least 0.8 mm andeast improvement was seen for subject 10 whose errors im-
for 13 subjects it increased the surface coverage. Subjectptroved only slightly. For some subjects, the optimization
benefited the most from the optimization. Her default equi-was essential, for without it some sounds only had two of the

TABLE lll. Midsagittal optimization for the primary and additional subjects based on four speech sounds. The default selections afid peseltsheses
use simple equidistantly spaced points. Valueg-e) are displayed for selections that captured only two points for at least one sound, so that no spline

estimation can be done for that sound. Errors reported here are measured only on the midsagittal contour.

Subject Optimal selections Default selections Average error Maximum error Standard deviation Coverage
Primary [00 10 18 23 31 3b (00 09 18 27 36 4b 0.15 (0.27 0.45 (1.40 0.19 (0.38 0.84 (0.82
1.AC. [10 13 21 29 38 4B (09 16 24 31 39 46 0.50 (0.59 1.49 (1.8 0.63 (0.70 0.90 (0.8
2.C.S. [12 17 21 29 35 4p (09 16 22 29 35 4p 0.32 (0.43 0.94 (2.1H 0.41 (0.56 0.88 (0.93
3. E. B. [04121721262Pp (020916222936  0.21 (0.3 0.71 (1.59 0.28 (0.48 0.79 (0.82
4. E.D. [08141823273p (020916222936  0.37 (0.50 1.16 (2.01) 0.49 (0.65 0.84 (0.76)
5. E. L. [05101927354p (000817 25344p  0.41 (--) 1.30 () 0.52 (---) 0.88 (0.69
6. E. S. [07 12 16 21 26 31L (0108 14 21 27 34 0.35 (--) 0.99 (---) 0.44 (---) 0.84 (0.62
7.F.S. [10 15 19 23 28 3b (09 15 21 27 33 3P 0.28 (0.52 1.04 (2.42 0.37 (0.68 0.86 (0.80
8.J. M. [06 10 16 23 31 4b (05 13 21 29 37 4pb 0.43 (0.49 1.40 (2.27) 0.55 (0.65 0.83 (0.78
9.J. U. [03 07 1319 25 3p (00 08 16 24 32 4D 0.27 (0.42 1.02 (2.40 0.36 (0.57 0.81 (0.8)
10. K. L. [02061522304p (011018273544  0.47 (0.53 1.65 (1.69 0.58 (0.68 0.90 (0.79
11. K. R. [16 21 24 28 33 3B (1318232934 3p 0.31 (0.50 0.99 (2.0 0.42 (0.69 0.87 (0.83
12. M. B. [17212529323p (141924283338  0.23(0.36 0.71 (1.42 0.32 (0.51) 0.84 (0.77)
13.R. S. [1519 22 24 29 3} (12 17 2328 34 3P 0.28 (0.40 0.98 (1.40 0.39 (0.56 0.85 (0.86
14. S. F. [0710151723 3L (031017243138  0.39(0.44 1.44 (1.50 0.50 (0.53 0.79 (0.82
15. S. G. [01 08 16 24 32 4b (001020314151 0.39 (--) 1.16 (---) 0.48 (---) 0.84 (0.66
16. T. M. [19 23 27 32 37 4D (16 22 27 33 38 44 0.38 (0.45H 1.33 (1.59 0.50 (0.63 0.84 (0.83
17. V. S. [182328313438 (172226313540  0.34(0.49 1.18 (1.45 0.46 (0.62 0.93 (0.78
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coronal motion. Manual transducer positioning is acceptable
if predetermined slice positions are calculated accurately,
and precision of transducer placement is assured.

The third issue of importance is reconstruction accuracy
of 3D shape and motion. Global reconstruction was opti-
mized by minimizing the maximum and standard deviation
errors. As a result, the average errors were below the mea-
surement error for ultrasound. The largest maximum error
for all 19 sounds was 1.40 mm, which occurred éh éne
_____ time on an extreme edge. The greatest standard deviation
 — error was 0.44 mm, which occurred for /i/. Errors above 1.2
"""""""""""" mm occurred exclusively at the most lateral edge, and errors
above 1.0 tended to occur in the posterior most row.

Optimized reconstructions also need to represent local
oniminea \|/ features well, such as asymmetry, local depressions, and

steep slopes. Optimization improved representation of local
F1G. 9. Sadittal cont et for subiect 5 showind that the def Ifeatures compared to equidistant slices. Midsagittal optimi-
set('da'sheaa?;ai(;\s‘t:g?ncé:rssu?e thee c(:)(;]r?tlcj)ir;);(;sruo:]eecsousn(;)\;vtlrtll(gﬁtmioli§ore - Eatlon further improved r_mdsagﬁtal feature_s. The first fe_a'
more points, while the optimal set does intersect each contour at three dHI'€, tongue asymmetry, is more prevalent in tongue motion
more points. than in static data and so will be even more important for
future studies. Left-to-right rotation and a ‘“leading edge”

six equidistant points fall on the tongue surface, as marke@re seen fairly often in coronal ultrasound images of speech.
by (---). This occurred when the subject had great anterior-These asymmetries do not vary systematically with palatal
posterior differences in tongue position across sounds. Figshape, or handedne@idamlet, 1987, they are more preva-

ure 9 presents an example of this positional difference fofent in some subjects and some tasks, however. When the

subject 5. The contour for /i/ went from a two-point to a Slice selection is based on midsagittal points, asymmetries
three-point representation after the optimization. cannot be taken into account, since no lateral information is

available. However, leading edges and left-to-right rotations
extend across a fairly long region of the lengthwise tongue
and, therefore, should be captured by one or more sparse
This study was able to reconstruct 3D tongue surfacélices. Future research will continue to carefully assess error
shapes using as few as six coronal slices. The best slida representation of asymmetry using the current method.
selection used an optimized set of midsagittal points. The second feature, local tongue depressions or dimples,
Three important issues are involved in choosing a spars@as visible in this data set for nonhigh back vowels and /I/.
data set for 3D reconstruction. The first and most importanfhey have been observed fairly often in other ultrasound
issue is finding the best six-point source set for each subjectlata set¢Davis, 1996; Fig. 1and can be inferred from some
Without this, results cannot be generalized across subjecfpint tracking datg Stone, 1990(Table )] and MRI data
and validity of the method is breached. The optimal sparséKumadaet al, 1992; Niitsuet al., 1992 as well. They tend
source sets determined here will certainly not be optimal foto appear in the “middle” segment of the tongtapproxi-
all subjects. Therefore, prior to data collection, a midsagittamately 2.5-4 cm back from the protruded)ti@f. Stone,
data set needs to be collected for each subject. From this dat®90. The present 3D reconstructions captured dimples very
set an optimal source point set is determined for reconstrucgccurately because dimples occur at midline and the six-
tion of the midsagittal profile. Coronal images would then bepoint sparse set optimized their representations.
collected at each point and reconstructed as described earlier. Accurate representation of steep slopes was the third
This procedure can be used to collect time-varying speecfeature examined in the reconstructions. Front raised sounds
samples at each coronal slice angle for use in 3D time-e.qg., high front vowelshave a very advanced tongue root.
motion reconstructions of the tongue surface during speecihis is due to genioglossus posteri@®GP contraction,
The midsagittal data can be used in the reconstructions aghich causes a deep posterior groove defined by a steep
well. slope midsagittally and laterally. Anteriorly, the tongue sur-
Second, the transducer must be positioned in an accuraface is high and flat, or even arched. Therefore, a sharp in-
and precise manner. A positional error of a few degrees iflection point in the midsagittal profile separates the anterior
one slice will reduce significantly the capture of local shapearch from the posterior groove. Choosing a point too far
features such as dimples and degree of grooving. Althougfrom the inflection point will cause a serious underestimation
not addressed in this paper, a 3D automated head and trane-the slope magnitude and origin point. Moreover, during
ducer support systeffRHATS) based on the currently used changes from front raising to other shape categories, such as
2D head and transducer supp@HATS) system(Stone and  back raising, 3D motion reconstructions from inappropriately
Davis, 1995 is under construction. This system uses com-selected slices will misrepresent and reduce the accuracy of
puter(or manually controled positioning of the transducer at the deformation.
predetermined angles for collection of real-time sagittal and  One type of “error” is utterance-to-utterance variation,

Point Sets

default

Ill. DISCUSSION
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or free variation. Humans do not produce repeated speedtier, W. M., and Smith, K.(1985. “Tongues, tentacles and trunks: the
sounds identically. We expect that the induced variation in biomechanics of movement in muscular-hydrostats,” Zoo. J. Linnean Soc.
shape between the;/land /b/ (1.63-mm maximum differ- 83 307-324.

ence is the same size or larger than would occur in freeKumada' M., Niitsu, M., Niimi, S., and Hirose, 1992. "A Study on the
g Inner Structure of the Tongue in the Production of the 5 Japanese Vowels

variation and is consistent with systematic differences due 10 py Tagging Snapshot MRI,” Research Institute of Logopedics and Phoni-
morphological constraints. If so, such differences would be atrics, University of Tokyo, Annual Bulletin, Vol. 26, pp. 1-13.

larger than the maximum measurement er(dr40 mm) Miyawaki, K., Hirose, H., Ushijima, T., and Sawashima, M979. “A
caused by using the sparse data set and should be well reppreliminary report on the electromyographic study of the activity of lin-

: : : :4_ gual muscles,” Research Institute of Logopedics and Phoniatrics, Univer-
Irierzlseented, especially if the important features occur at mid sity of Tokyo, Annual Bulletin, Vol. 9, pp. 91106,

Niitsu, Kumada, M., Niimi, S., and Itai, Y(1992. “Tongue Movement
The current sparse set criteria minimize the problem of during Phonation: A Rapid Quantitative Visualization Using Tagging
accurate 3D tongue reconstruction from a sparse slice set, asnapshot MRI Imaging,” Research Institute of Logopedics and Phoniat-
can be seen from the maximum and standard deviation errorgics, University of Tokyo, Annual Bulletin, Vol. 26, pp. 149-156.

in Table II. The standard deviation errors seen in the datg°"es: B, Shawker, T., Hall, T., Gerber, L., and Leightor(1981. “Ul-

h ical Th . trasonic Visualization of Tongue Motion During Speech,” J. Acoust. Soc.
were no worse than typical measurement error. e maxi- Am. 70, 683—686.

mum errors(above 1.3 mmwere seen on the edges. OUr stone, M.(1990. “A three-dimensional model of tongue movement based
expectation is that the selection of fairly equidistant slices, on ultrasound and x-ray microbeam data,” J. Acoust. Soc. 8n2207—
and the optimization across all the lingual sounds in English, 2217.

will continue to provide as reasonable a 3D coverage as iS©°": M.(1999. “"How the tongue takes advantage of the palate during
possible speech,” inProducing Speech: Contemporary Issues: A Festschrift for

Katherine Safford Harris edited by F. Bell-Berti and L. J. Raphael
(American Institute of Physics, New YorkChap. 10, pp. 143-153.
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