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This paper discusses methods for reconstructing the tongue from sparse data sets. Sixty ultrasound
slices already have been used to reconstruct three-dimensional~3D! tongue surface shapes@Stone
and Lundberg, J. Acoust. Soc. Am.99, 3728–3737~1996!#. To reconstruct 3D surfaces, particularly
in motion, collecting 60 slices would be impractical, and possibly unnecessary. The goal of this
study was to select a sparse set of slices that would best reconstruct the 18 measured speech sounds.
First a coronal sparse set was calculated from 3D surface reconstructions. Selection of contours was
globally optimized using coarse to fine search. Sparse and dense reconstructions were compared
using maximum error, standard deviation error, and surface coverage. For all speech sounds,
maximum error was less than 1.5 mm, standard deviation error was less than 0.32 mm, and average
reconstruction coverage was 80%. To generalize the method across subjects, optimal slice locations
were calculated from only the midsagittal contour. Six midsagittal points were optimized to
reconstruct the midsagittal contour. Corresponding coronal slices were then used to reconstruct 3D
surfaces. For data collection planning, a midsagittal sample can be collected first and optimal
coronal slices can be determined from it. Errors and reconstruction coverage from the midsagittal
source set were comparable to the optimized coronal sparse set. These sparse surfaces reconstructed
static 3D surfaces, and should be usable for motion sequences as well. ©1999 Acoustical Society
of America.@S0001-4966~99!03610-3#

PACS numbers: 43.70.Jt@AL #
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INTRODUCTION

Ultrasound imaging has been used to represent ton
positions for over 15 years~Sonieset al., 1981; Keller and
Ostry, 1983; Stoneet al., 1983!. Like other imaging systems
it provides a 2D measurement of the tongue surface con
in a single plane~such as midsagittal, coronal, or oblique!.
One strength of ultrasound is that it images tongue con
movement using a fairly rapid frame rate~30 Hz!. Another is
that contours from several spatial planes can be reconstru
into 3D surfaces~Stone and Lundberg, 1996!. However, as
ultrasound collects 2D slices, the subject must repeat
speech corpus once for each desired slice. Also, both
tours and surfaces are represented by many points. T
compact quantification of movement is difficult in the case
contours and even more difficult in the case of surfaces. T
improvements of the ultrasound technique would radica
increase its usefulness: reduced dimensionality of a ton
contour or surface, and accurate representation of sur
motion. Prior research has accurately represented static
tongue surface shapes from dense data sets of ultras
images~Stone and Lundberg, 1996!. The present paper pre
sents methodology to accurately represent static 3D ton
surface shapes and motion from sparse data sets of u
sound images. The method also reduces the dimension

a!Electronic mail: lundberg@cs.jhu.edu
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of tongue surface representation and maintains highly ac
rate reproduction of local deformation features. This mod
cation is an essential step if multi-plane tongue moveme
are to be reconstructed practically into tongue surface mo
ments. Ultrasound has been shown to be a useful tool
collecting 3D tongue surface data. It is noninvasive, has
exposure limits, and is relatively inexpensive~$20 000
USD!.

In previous research, a series of 2D images was used
reconstructing a detailed 3D view of the tongue surfa
~Stone and Lundberg, 1996!. This required a special trans
ducer, however, which collected 60 slices in a polar sweep
60 degrees in 10 s. While this was feasible for a 3D sta
speech sample, this method is too slow for 4D data collec
~3D surfaces moving in time!. As there are not yet any 3D
ultrasound devices that simultaneously collect multiple
slices in motion, any 4D sample would need to be repeateN
times ~where N is the number of slices to be used in th
reconstruction!.

The motion of three-dimensional tongue surfaces is
interest because the tongue is a complex system that is
cal in speaking, swallowing, and breathing. The tongue i
volume preserving, deformable object. That is, tongue sh
is systematically related to tongue position, because ton
volume can be redistributed, but not increased or decrea
Complicated tongue surface shapes can be produced in
and 3D due to the complex distribution of the tongue
28586(5)/2858/10/$15.00 © 1999 Acoustical Society of America
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muscles and its lack of bony tissue~Kier and Smith, 1985!.
The intrinsic muscles originate and insert on soft tissue;
extrinsic muscles also insert on soft tissue, thus insuring
formation with every movement. Contracting vario
muscles and contacting the palate allows complicated sh
to be made. Subtle changes in these shapes reflect differ
due to coarticulation~Stone and Lele, 1992!, dialect and lan-
guage~Stone and Yeni-Komshian, 1991!, and speech disor
ders~Stone, 1995!. In order to capture subtle shape chang
due to these factors, especially over time, accurate ton
surface representation is essential.

The present study used the database acquired in S
and Lundberg~1996! to determine a minimal number, o
sparse set, of coronal slices needed for reasonable re
structions. The specific coronal slices to collect must
specified, as well as what error tolerances define a reason
reconstruction. Earlier work~Miyawaki et al., 1975; Stone,
1990! suggested that 3D tongue surface shape could be
equately specified using five lengthwise segments. Th
fore, although many sparse sets of coronal slices were te
five slices were hypothesized to be optimal. In fact, six sli
were determined to give the most accurate compact repre
tation, as discussed below.

While real-time 3D ultrasound devices do not yet exi
there are experimental ultrasound systems that simplify
data collection of multiple static 2D slices. These approac
use a 2D ultrasound transducer with an automated 3D sp
positioning system. One system is the scanning 3D tra
ducer used in Stone and Lundberg~1996!, which internally
moves a 2D transducer through a radial space~Acoustic Im-
aging Inc., Phoenix, AZ!. The second is a holder that exte
nally rotates a traditional 2D transducer~Tomtec Inc., Den-
ver, CO!. The first is static; the second allows time-varyin
data to be collected independently at several slices and
reconstructed. Both systems collect up to 60 planes of d
and use computer control to position the transducer, but
commercial reconstruction algorithms are quite poor, a
slices in planes, other than the original, are very unrealis
Moreover, measurement of 60 tongue planes at 30 frames
second is unrealistically time consuming and unnecessa
dense spatially.

An alternative method, data-driven slice selection, c
culates from subject data an optimal sparse source se
coronal slices from which reasonable 3D surfaces can
constructed. For this method, an externally rotated tra
ducer, or even a manually positioned system, would be
ficient for 4D data collection. Thus, to collect data for 4
reconstructions, one would do multiple data collections
coronal tongue image sequences at a few specific orie
tions. The separate image sequences would then be ali
in 3D space from their respective collection orientations.
this paper, data-driven slice selection is simulated by sel
ing a sparse set of slices from the already existing dense
of coronal slices described in Stone and Lundberg~1996!.

I. METHODS

A. Subject and speech materials

The subject was a 26-year-old white female with a B
timore Maryland accent. Nineteen English speech sou
2859 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999 A
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were studied: /i/, /(/, /e/, /}/ /,/, /Ä/, /#/, /Å/, /o/, /)/, /u/, /É/,
///, /Y/, /b/, /s/, /l/, /n/, /G/. The subject sustained each ph
neme for 10 s while 60 slices were collected. The data w
collected with the subject lying on her back because the
transducer required a non-upright position for clear ima
~due to a fluid bubble within the transducer head that wo
obscure ultrasound when the transducer was in an upr
position!. Complete recording procedures and subject inf
mation can be found in Stone and Lundberg~1996!. In addi-
tion, for this experiment, several additional tongue surfa
were collected. For validation of the reconstruction proc
dures the vowel /,/ was collected twice using sagittal an
coronal slices. To study variability the sound /l/ was co
lected twice, once with a normal articulation, and once pu
ing the tongue tip into the palate to induce variability.

B. Validation of dense data set

Prior to determining an optimal sparse source set for
3D reconstructions, validation of the dense data sets
performed to guarantee the accuracy of the original~dense!
data reconstructions. Further validation was performed
the reconstruction method beyond the original phantom
construction of a known surface done in Stone and Lundb
~1996!. Data collection and reconstructions of the tong
surface were done from the coronal and sagittal dense
sets for /,/. The first collection was done with the 60 slice
oriented in the coronal direction. For the second data set,
transducer was rotated 90 degrees so that the 60 slices
oriented in the sagittal direction. Surface reconstruction w
performed on each data set, and they were overlaid in
space to find the best fit in terms of overlap and minim
error~measured as the 3D distance between surface point
the data sets!. It should be noted that this error would includ
the normal variability between repeated tokens of the sa
phoneme. For the coronal and sagittal /,/ data, the maxi-
mum error achieved was 2.6 mm, with a standard devia
error of 1.16 mm, and 86% overlap of the two data sets~see
Fig. 1!. Figure 1 shows the reconstructed /,/ surfaces from
coronal~left! and sagittal~right! slice sets and a set of dis
tance vectors~bottom! comparing the two surfaces. The di
tance vector image is a set of vectors from the first~left!
reconstructed surface to the second~right! surface. The
length of any vector corresponds to the 3D distance betw
the surfaces at that point~the orientation of the vectors is no
necessarily in the direction of the shortest 3D distance
tween the surfaces!.

These intersurface differences were largely due to
ferences in measurement errors that occur in coronal
sagittal tongue contours when using ultrasound. Tissue ed
become difficult to measure whenever the surface is obli
to the ultrasound beam. This is most problematic for sagi
images when the tongue surface is grooved, and a sag
contour may lie entirely along the descending slope of
groove. In the coronal plane, this is most problematic in
tongue root, where the entire contour may be oblique to
ultrasound beam. In general, one can recover a groove m
easily from a coronal scan, and one can measure more o
tongue root on sagittal scans.
2859. J. Lundberg and M. Stone: 3D tongue surface reconstruction
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For comparison, and to test measurement repeatab
the same judge twice measured the /Ä/ surface of a single
coronal ultrasound image~see Fig. 2!. A year had passed
between the two measurements of the images. The error
tance between the two reconstructed surfaces had a m
mum error of 1.84 mm, standard deviation error of 0.32 m

FIG. 1. Reconstructions of coronal /,/ surface~left! and sagittal /,/ surface
~right! and distance vectors showing the distances between them.

FIG. 2. Two reconstructions of an /Ä/ measured twice from the corona
images to test measurement repeatability and the distance vector su
between them.
2860 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999 A
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and 96% overlap. The maximum error was greater than
error induced by using sparse reconstructions.

C. Determining an optimal sparse source set

For the dense data sets, tongue surfaces were re
structed as a b-spline surface that interpolated the dens
of coronal tongue surface contours~Stone and Lundberg
1996!. As tongue surfaces are fairly smooth, particularly b
tween the measured contours of the dense data set, a b-s
surface is a sufficient model. For the sparse data sets, to
surfaces were similarly reconstructed by defining t
b-spline surface that most smoothly interpolated the f
coronal tongue surface contours~measured from ultrasoun
slice images!. Tongue surfaces are simple enough to be
constructed by a small set of coronal contours by t
method, but the position of these coronal slices becomes
portant. For example, for an arched surface the coronal sl
must be selected near the point of maximal curvature
displacement. If inappropriate coronal contours are used
reconstruct the tongue, the resulting surface may~at worst!
intersect the true surface only along those contours, and
be of a significantly different shape. Selection of a reas
able set of coronal contours is critical to sparse reconst
tion of the tongue.

A sparse reconstruction contains just a few coro
slices from the dense set of 60 coronal slices, so there
many possible sparse sets one could collect. In fact,
dense data set can be considered to be 56 slices, as no
the speech sounds had measurable data beyond the 55th
and slice numbering starts at 0~see Fig. 3!. We considered
selecting six slices because this was in fact determined to
the most appropriate choice for balancing data collect
constraints and reconstruction accuracy~see Fig. 4!. There
were then 56 choose 6@6 selected from 56 without regard t
selection order556!/(6!(5626)!)#, or about 32 million
possible sets of six coronal slices. The optimal slice set
to be defined globally for all 19 speech sounds, even tho
each sound had a different optimal set, because the tr
ducer is fixed during actual speech production. There w
two desirable properties used in defining an optimal spa
reconstruction. The first was maximal reconstruction cov
age, i.e., the ratio of the tongue surface measured in
dense set of tongue slices that was covered by the spars
The second was minimizing error.

1. Reconstruction coverage

As the tongue moved forward and back in the mou
during speech, the first and last measurable coronal ima
~for a fixed dense set of radial images! varied widely ~see
Fig. 3!. Loss of the front slice~s! occurred when the tongu
was pulled back and up, creating a sublingual air cavity.
the back, limits on measurable slices were not from tong
position, but from reduced image clarity caused by the
creasingly oblique orientation of the tongue surface to
ultrasound beam~which varied in different tongue surface
and speech sounds!. The sound /i/ exemplifies both thes
problems, as /i/ is the highest of the front raised vowels, a
is also very oblique and difficult to measure in the back.

ace
2860. J. Lundberg and M. Stone: 3D tongue surface reconstruction
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Each of the speech sounds had a specific range of m
surable surface contours within the 60-degree 3D sector.
any speech sound, if the extremes of that measurable r
are in the sparse data set, the sparse reconstruction of
speech sound will cover the full 3D sector range that a de
data set covered. If the extreme measurable slices are
part of the sparse set, the sparse reconstruction will be t
cated at the most extreme slice that does lie within its m
surable range. Reconstruction coverage is the area rat
the sparse reconstruction over the dense reconstruction
the coronal slices were collected in a polar sweep, the rec
struction coverage can be estimated by the degree range
ered by the measurable slices of the sparse set divided b
range covered by all measurable slices for any spec
sound. For example, for /i/ only four of the six slices fe
within the measurable surface~see Fig. 3!, so its reconstruc-
tion coverage is 25 degrees/31 degrees.

In order for a 3D reconstruction to be useful it shou
cover as much of the tongue as possible. Therefore, sp
sets containing from two to nine-slices were optimized

FIG. 3. The range of measurable slices for each of the data sets and ve
lines showing the locations of the six-point optimal sparse source se
coronal slices.
2861 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999 A
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maximum coverage~see Fig. 4!. The benefit gained from
increasing the number of slices diminished beyond six slic
A second consideration was the practical limitations of r
speech data collection. Using current ultrasound instrume
the subject must repeat the speech corpus once for each
as they are collected independently. Therefore, fewer sl
are preferred. The third consideration was a prior indicat
that a large reduction in the number of slices was feas
~Stone, 1990!. Based on these three considerations and
data in Fig. 4, six-slice sets were optimized.

2. Error analysis of the six-slice set

The second property desired in an optimal reconstr
tion was minimal error. Sparse sets of six slices were o
mized for minimum error. Reconstruction of the tongue s
face from a sparse set of slices was identical to the met
for reconstructing from a dense data set. An interpolat
b-spline surface was fit to the set of surface data points.
the sparse data set from six coronal slices, this had the e
of simplifying the reconstructed surfaces along the sagi
axis. The resulting tongue surfaces were smoother,
might lose detail. To measure the errors induced by this d
reduction, the dense reconstruction was compared to
sparse one. To do this, a regularly spaced 2D grid of vert
lines ~about one 1-mm spacing! was intersected with the
tongue surface. A large enough grid was selected so tha
the tongue surfaces in the data set were covered. Thes
tersections gave a regularly spaced set of tongue sur
points from the dense reconstructions. For each grid poin
the dense data set reconstruction, the closest surface
was found for the sparse reconstruction. The 3D distan
between these point sets over all points gave a set of er
From these, maximum and standard deviation errors m
sured in millimeters were determined for each of 19 tong
surfaces~corresponding to 19 different static speech sound!.
The 3D distances were used as a distance measure, as p
vertical error measures would exaggerate the distances
oblique areas of the surface. In contrast, 3D error distan
are measured in a direction normal to the surfaces in
areas.

ical
of

FIG. 4. Coverage of reconstructions for sparse data sets with different n
bers of coronal slices.
2861. J. Lundberg and M. Stone: 3D tongue surface reconstruction
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TABLE I. Reconstruction errors resulting from sparse reconstructions based on different optimizations. No optimization~None! refers to simply taking an
equidistant spacing of slices over the full range of the data. Errors reported are for 3D error measured over the surfaces of the 19 speech soundt for
the six-point set.

Optimization Selected slices
Average

error
Maximum

error
Standard deviation

error Coverage
Error cost5max1s.d.
1@23(1-coverage)3#

None ~0 11 22 33 44 55! 0.37 2.66 0.53 0.79 4.21
Six-slice set ~0 8 16 24 33 38! 0.23 1.42 0.32 0.82 2.63
Six-point set ~3 10 18 24 32 38! 0.21 1.40 0.29 0.80 2.67
Six-point seta ~3 10 18 24 32 38! 0.20a 0.81a 0.27a 0.80a 2.06a

aErrors measured for the midsagittal contour only.
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3. Optimization of global error cost

To select a set of optimal sparse coronal slices, optim
ity was defined as minimizing the error cost function:

error cost5maximum error1s.d. error

1@23~12reconstruction coverage!3#. ~1!

In addition to this cost function, sparse sets covering an
erage of less than 0.66 of the 19 speech sound set w
eliminated from consideration to prevent the optimizati
from being skewed by outlying maximum errors. The co
stant 2 in the error cost equation balances the optimiza
between the goals of minimizing error and maximizing co
erage. Some balance is necessary because simply max
ing coverage results in high surface errors~larger errors than
the default equidistant errors in Table I!, and optimizing for
error only would result in shrinking the sparse surface
consecutive slices one degree apart. For all subjects
sented in this paper, the value 2 worked well for both sagi
contour and 3D surface optimizations. Evaluation of the
ror cost for any slice set required a sparse reconstruction
each of the speech sounds. A brute force search of the
million possible sets would require roughly a year of pr
cessing time. Thus, a search was needed that could gi
fast approximation to the global optimum. A coarse to fi
method was used to first get a rough estimation of the glo
optimum, and then refine that estimation. To do this,
method tests all possible six-slice sets with the restrict
that only every fourth possible slice from the dense se
considered. This is equivalent to finding the best sparse
construction from a set of coronal slices space 4 deg
apart. So, at this most coarse level, there are only 56/4514
possible slices. Since 14 choose 6 is only 3003, all th
possibilities can be tested. After determining this coarse s
optimum, six-slice sets at a finer level are tested. Now
stricted to every second slice, all possible six-slice s
within a single size 2-degree step are considered. In o
words, at each slice position, consider the slice 2 deg
before, the current slice, and the slice 2 degrees after,
choose the best permutation across all six slices. Thus
lecting from three slices at six positions gives 365729 per-
mutations to consider. The best of these permutations is
refined by the same process, using a step size of 1 degre
give a global optimum approximation. This coarse to fi
method is much faster than considering the full range
permutations. It considers 30031729172954461 rather
than 32 million possibilities. The possibilities it does n
consider are those where multiple slices are within 4 deg
2862 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999 A
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of one another. For creating sparse data sets, it is hig
unlikely that such data sets will be optimal~over the total
range of 501 degrees!, so the use of the coarse to fin
method should be very reasonable.

The optimal sparse coronal set, for all 19 sounds,
sulted in an average error of 0.25 mm, a standard devia
of 0.33 mm, a maximum error of 1.47 mm, and 84% cov
age of the dense data sets. Due to the variability in length
tongue surfaces the maximal reconstruction coverage
sible for any six-slice set would be 90%~see Fig. 4!. As
ultrasound has a measurement error around 0.5 mm,
sparse data set was a very good approximation. This i
cated that accurate reconstructions could be made from t
varying ultrasound with as few as six slices~at the appropri-
ate positions!.

D. Optimizing source sets for individual subjects

These data sets and analyses were based on a s
subject, so there is legitimate concern that any subject’s
timal sparse source set will vary based on factors of spe
production, subject size, or the surrounding vocal tract sha
It would be foolish and impractical to do a dense 3D reco
struction of each subject simply to find the best sparse sli
For this reason, a simpler method for estimating optim
sparse source sets was sought. Instead of measuring the
in the entire 3D surface reconstruction from a sparse coro
slice set, error was measured only in the 2D midsagittal c
tour reconstruction from a sparse midsagittal point data
In effect, this would concentrate on the midsagittal slice, a
perform the same analysis as finding the best set of slices
in only two dimensions. This was simulated on the den
data set by extracting the midsagittal profiles for the
speech sounds, and determining the optimal set of po
needed to best reconstruct the global set of profiles.
coronal slices corresponding to the optimal midsagi
points were remarkably close to those selected by the
analysis. Using them as the sparse set resulted in slig
reduced surface coverage, but also gave improved error m
surements particularly at midline.

II. RESULTS

The goal of this study was to reduce the representa
of the tongue surface to a few key slices~i.e., optimal sparse
source slices!. These slices had to reconstruct 3D tong
surfaces with the highest accuracy possible. If this step
accomplished adequately, the procedure could be develo
further to collect time varying data at each slice for use in
2862. J. Lundberg and M. Stone: 3D tongue surface reconstruction
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TABLE II. Errors in 3D reconstructions based on the optimizations of six coronal slices and six midsaggital points.

6 slices 6 points

Sound
Average

error
Maximum

error
Standard deviation

error Coverage
Average

error
Maximum

error
Standard deviation

error Coverage

i 0.37 1.42 0.48 0.97 0.32 1.37 0.44 0.90
( 0.17 0.88 0.22 0.70 0.17 1.03 0.23 0.65
e 0.16 0.82 0.21 0.75 0.15 0.51 0.20 0.70
} 0.23 1.34 0.31 0.88 0.26 1.40 0.32 0.81
, 0.26 0.77 0.28 0.94 0.19 0.72 0.25 0.83
Ä 0.19 0.79 0.25 0.93 0.21 1.06 0.28 0.85
# 0.42 1.42 0.52 0.97 0.31 1.18 0.40 0.85
Å 0.32 1.20 0.41 0.73 0.28 1.29 0.36 0.93
o 0.16 0.74 0.21 0.83 0.18 0.70 0.24 0.73
) 0.20 0.89 0.29 0.81 0.12 0.49 0.15 0.95
u 0.21 0.86 0.27 0.63 0.17 1.14 0.24 0.80
É 0.38 1.38 0.50 0.80 0.20 1.06 0.27 0.90
/ 0.14 0.53 0.17 0.91 0.21 0.79 0.28 0.83
Y 0.15 0.83 0.20 0.83 0.15 0.60 0.19 0.76
b 0.32 1.24 0.42 0.73 0.29 0.99 0.36 0.68
s 0.18 0.64 0.22 0.92 0.16 0.52 0.20 0.81
l 0.22 1.07 0.30 0.61 0.24 0.90 0.30 0.57
n 0.20 1.38 0.30 0.86 0.19 1.14 0.27 0.80
G 0.22 0.86 0.29 0.88 0.27 0.84 0.34 0.82

Range 0.14–0.42 0.64–1.42 0.17–0.52 0.61–0.97 0.12–0.31 0.49–1.40 0.12–0.44 0.57
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reconstructions~x,y,z,t!. Two sparse source sets were cons
ered. The first was the set of six coronal slices optimiz
from all the coronal slices of the 56-slice dense set~hereafter
called the six-slice set!. The second set was the six coron
slices corresponding to the midsagittal points optimized
reconstructing the midsagittal profile~hereafter called the
six-point set!.

A. Global characteristics of the reconstructions

For each of the sparse sets, global measures of re
struction accuracy were calculated. Table I shows the o
mal six-point and six-slice sets with their global reconstru
tion errors. Maximum error, standard deviation error, surfa
coverage, and the resulting cost function were calculated
the entire set of surfaces. The results indicated that the
optimal sparse source was the six-point set. Surface cove
was degraded from the six-slice set optimum and error
improved. Use of midsagittal points as a source set tende
produce better reconstructed surfaces than the coronal s
many cases, because midsagittal points focused the op
zation algorithm on midsagittal features. Thus local depr
sions, or ‘‘dimples,’’ as seen in /l/ and /Ä/, and steep slopes
as seen in /i/ and /É/, were better captured using the midsa
ittal source sets. Larger error was seen instead at the
faces’ extreme edges~the least important areas! and also in
areas of left-to-right asymmetry, as midsagittal optimizat
ignores and thus may diminish asymmetries. Errors for in
vidual sounds are shown in Table II. The six-point reco
structions had smaller average errors than the six-slice re
structions for 11 of the 19 sounds; maximum error w
smaller for 13 of the sounds, including all the consonan
Coverage was improved in only four cases. The sparse
constructions were also more accurate than repeated
surements of a frame~Fig. 2! or comparing sagittal versu
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coronal dense data sets~Fig. 1!. This would indicate that
human error in edge detection would be the primary sou
of error in sparse reconstructions. Concurrent with
present study, a new and automated edge detection syste
being developed that should improve measurement relia
ity.

B. Preservation of local features

In addition to global statistical error measurement, fo
‘‘local’’ features were considered: left-to-right asymmetr
abrupt changes in slope, local surface depressions, and
constriction location in fricatives. Visual inspection of th
dense reconstructions indicate that depressions and ab
changes in slope were most evident in the midsagittal pl
~Stone and Lundberg, 1996; Figs. 4–6!. Preservation of these
two features in the sparse reconstructions was enhance
optimizing slice selection in the midsagittal plane. A sour
set determined by midsagittal points cannot account for l
right differences in shape or motion. In these data sets as
metry was least well represented. If the selected slices pa
through maximally asymmetric regions, the length of t
asymmetry would be overestimated. If the slices missed
areas of maximal asymmetry, the degree of asymme
would be underestimated. The most asymmetrical ton
shape in the data set was /i/ where the maximum error
1.37 mm.

The second and most easily resolved local feature
the local dimple seen in low back vowels and /l/~Stone and
Lundberg, 1996; Figs. 5 and 6!. The use of the five- and
six-point sparse sets instead of the coronal sparse set gr
improved resolution of centrally occurring depressions in
3D surfaces, as they were key features in the midsag
profile as well. Figure 5 compares the dimple in the den
and sparse surfaces for /l/.
2863. J. Lundberg and M. Stone: 3D tongue surface reconstruction
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that had incomplete data at one end or the other; and little
The third local feature was abrupt change in slope. T
feature was particularly evident for /i/ which had an arch
tongue in the front, and abruptly became grooved in
back. In addition, the measurable tongue surface was
short. The six-point set resulted in four measurable slices
even the shortest tongue surfaces, and captured the gro
very accurately. Figure 6 shows good representation
abrupt slope changes and deep groove in /i/.

The fourth local feature was the location of fricativ
constrictions. Fricative constructions in English often occ
slightly off midline. Moreover, they may not be marked b

FIG. 5. Reconstructions from a dense set of slices~left!, and from a six-slice
set ~right! for /l/ and the distance vector surface between them.

FIG. 6. Reconstructions from a dense set of slices~left!, and from a six-slice
set ~right! for /i/ and the distance vector surface between them.
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midline tongue features. Therefore, particular attention w
paid to the error in the three fricatives /Y/, /s/, and /b/. Table
II shows the maximum error for each sound. For /Y/ the
maximum error 0.60 occurred laterally, though not at t
edges. Maximum error was 0.2 mm at the constriction. El
tropalatography~EPG! data confirmed the subjects constri
tion locations~see Stone and Lundberg, 1996!. For the /s/ the
largest error was 0.5 mm and occurred at the edge. At
constriction, the largest error was 0.3 mm. The /Y/ and /s/
shapes were actually fairly easy to predict from a sparse
because the tongue shape did not change dramatically
front to back. The /b/ had a more changeable surface sha
and had larger average and maximum errors. The lar
error, 0.99 mm, occurred laterally. Several errors of 0.7 m
did appear in the constriction region slightly off the midsa
ittal plane. In the constriction region, the sparse data set
below the dense data set, which overestimated the cha
size.

C. Variability

Intrasubject variation occurs because humans do not
an utterance exactly the same way every time. Phoneme
duction varies slightly from repetition to repetition. Intra
subject variation could not be seen in these single utteran
One example of variation was contrived, however. The p
neme /l/ was repeated twice by the subject with the goa
creating two different shapes. The first, / l1 /, was produced
normally. The second, /l2 /, was produced with a forcefu
apical contact. Both were sustained about 10 s. The
tongue surfaces were measured and reconstructed usin
same procedure as in Figs. 5 and 6. In the /l/ comparis
however, the two surfaces were dense reconstructions of
ferent repetitions~see Fig. 7!. We were interested in wha
causes the midsagittal depression often seen just behind
tongue blade in /l/. It was hypothesized that the more for
ful apical contact would create a larger deformation for /l2 /,
the more extreme or ‘‘tense’’ production. Therefore, the /2 /
would have a deeper depression than /l1 /. This was found to
be true. The lower left portion of Fig. 7 shows the tw
tongues spatially aligned and superimposed. The /l2 / tongue
is higher than /l1 / in back and on the sides, and lower in th
depression region. The depression depths were 2 mm for1 /
and 4 mm for /l2 /, at the deepest point relative to the highe
point in the same coronal slice. The important features,
dimples, differed across the repetitions by 2 mm, larger th
the maximal error for sparse reconstructions. This num
should be accurate since it occurred in the midsagittal reg
where we generally expect smaller reconstruction errors.

Intersubject variation occurs because humans h
slightly different oral morphologies and use different stra
gies for creating speech gestures. Table III presents mid
ittal optimization data from 17 additional subjects. Fo
speech sounds were collected for each of these subjects:,/,
/Ä/, /i/, and /u/. The best six-point sparse set~optimal selec-
tions! is compared to the equidistant six-point sparse set~de-
fault selections!. The optimized selections column presen
the optimized range of slices. This makes it clear that acr
subjects there existed a variety of tongue lengths and fea
locations. Smaller ranges were caused by two things: tong
2864. J. Lundberg and M. Stone: 3D tongue surface reconstruction



en
ct
in
ar

ti-
an
c
u

ver-
er
ces

ater
four
as

on
to

m,
The
im-

on
the

f /
rs
th

nes
anterior-to-posterior differences among sounds. Differ
starting and ending slices among subjects, e.g., subje
versus subject 16, reflect rotational differences in position
the transducer, not true position differences. The prim
subject is the subject used in the rest of the paper.

Table III shows that for 11 of the 17 subjects the op
mization reduced the maximum error by at least 0.8 mm
for 13 subjects it increased the surface coverage. Subje
benefited the most from the optimization. Her default eq

FIG. 7. Reconstructions of dense sets from two distinct productions o
~normal and tense! to show intrasubject variability, the distance vecto
between them, and, on the lower left, the two surfaces superimposed in
best alignment. The black surface is for normal production, /l1 /, and the
gray surface is for tense production, /l2 /.
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t
3

g
y

d
t 7
i-

distant point set selected points 6 degrees apart with an o
all tongue length of 30 degrees. After optimization, h
tongue length was 25 degrees, and her interpoint distan
were 5, 4, 4, 5, and 8 degrees apart, indicating a gre
representation in the anterior tongue. Figure 8 shows the
vowel contours and the optimized points for subject 7
radial trajectories. With these modifications in point locati
for this subject, the average error decreased from 0.52
0.28, the maximum error decreased from 2.42 to 1.04 m
and the standard deviation decreased from 0.68 to 0.37.
least improvement was seen for subject 10 whose errors
proved only slightly. For some subjects, the optimizati
was essential, for without it some sounds only had two of

l/

eir

FIG. 8. Sagittal contours of the tongue for subject 7 showing radial li
indicating the default~dashed! and optimal~solid! point sets and their inter-
sections with the four speech sounds.
spline

age
TABLE III. Midsagittal optimization for the primary and additional subjects based on four speech sounds. The default selections and results~in parentheses!
use simple equidistantly spaced points. Values of~---! are displayed for selections that captured only two points for at least one sound, so that no
estimation can be done for that sound. Errors reported here are measured only on the midsagittal contour.

Subject Optimal selections Default selections Average error Maximum error Standard deviation Cover

Primary @00 10 18 23 31 35# ~00 09 18 27 36 45! 0.15 ~0.27! 0.45 ~1.40! 0.19 ~0.38! 0.84 ~0.82!
1. A. C. @10 13 21 29 38 43# ~09 16 24 31 39 46! 0.50 ~0.54! 1.49 ~1.86! 0.63 ~0.70! 0.90 ~0.87!
2. C. S. @12 17 21 29 35 42# ~09 16 22 29 35 42! 0.32 ~0.43! 0.94 ~2.15! 0.41 ~0.56! 0.88 ~0.93!
3. E. B. @04 12 17 21 26 29# ~02 09 16 22 29 36! 0.21 ~0.36! 0.71 ~1.59! 0.28 ~0.48! 0.79 ~0.82!
4. E. D. @08 14 18 23 27 32# ~02 09 16 22 29 36! 0.37 ~0.50! 1.16 ~2.01! 0.49 ~0.65! 0.84 ~0.76!
5. E. L. @05 10 19 27 35 42# ~00 08 17 25 34 42! 0.41 ~---! 1.30 ~---! 0.52 ~---! 0.88 ~0.69!
6. E. S. @07 12 16 21 26 31# ~01 08 14 21 27 34! 0.35 ~---! 0.99 ~---! 0.44 ~---! 0.84 ~0.62!
7. F. S. @10 15 19 23 28 35# ~09 15 21 27 33 39! 0.28 ~0.52! 1.04 ~2.42! 0.37 ~0.68! 0.86 ~0.80!
8. J. M. @06 10 16 23 31 45# ~05 13 21 29 37 45! 0.43 ~0.46! 1.40 ~2.27! 0.55 ~0.65! 0.83 ~0.78!
9. J. U. @03 07 13 19 25 30# ~00 08 16 24 32 40! 0.27 ~0.42! 1.02 ~2.40! 0.36 ~0.57! 0.81 ~0.81!
10. K. L. @02 06 15 22 30 42# ~01 10 18 27 35 44! 0.47 ~0.53! 1.65 ~1.68! 0.58 ~0.68! 0.90 ~0.79!
11. K. R. @16 21 24 28 33 38# ~13 18 23 29 34 39! 0.31 ~0.50! 0.99 ~2.07! 0.42 ~0.69! 0.87 ~0.83!
12. M. B. @17 21 25 29 32 35# ~14 19 24 28 33 38! 0.23 ~0.36! 0.71 ~1.42! 0.32 ~0.51! 0.84 ~0.77!
13. R. S. @15 19 22 24 29 34# ~12 17 23 28 34 39! 0.28 ~0.40! 0.98 ~1.40! 0.39 ~0.56! 0.85 ~0.86!
14. S. F. @07 10 15 17 23 31# ~03 10 17 24 31 38! 0.39 ~0.44! 1.44 ~1.50! 0.50 ~0.53! 0.79 ~0.82!
15. S. G. @01 08 16 24 32 45# ~00 10 20 31 41 51! 0.39 ~---! 1.16 ~---! 0.48 ~---! 0.84 ~0.66!
16. T. M. @19 23 27 32 37 40# ~16 22 27 33 38 44! 0.38 ~0.45! 1.33 ~1.54! 0.50 ~0.63! 0.84 ~0.83!
17. V. S. @18 23 28 31 34 38# ~17 22 26 31 35 40! 0.34 ~0.49! 1.18 ~1.45! 0.46 ~0.62! 0.93 ~0.78!
2865. J. Lundberg and M. Stone: 3D tongue surface reconstruction
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six equidistant points fall on the tongue surface, as mar
by ~---!. This occurred when the subject had great anteri
posterior differences in tongue position across sounds.
ure 9 presents an example of this positional difference
subject 5. The contour for /i/ went from a two-point to
three-point representation after the optimization.

III. DISCUSSION

This study was able to reconstruct 3D tongue surf
shapes using as few as six coronal slices. The best
selection used an optimized set of midsagittal points.

Three important issues are involved in choosing a spa
data set for 3D reconstruction. The first and most import
issue is finding the best six-point source set for each sub
Without this, results cannot be generalized across subj
and validity of the method is breached. The optimal spa
source sets determined here will certainly not be optimal
all subjects. Therefore, prior to data collection, a midsagi
data set needs to be collected for each subject. From this
set an optimal source point set is determined for reconst
tion of the midsagittal profile. Coronal images would then
collected at each point and reconstructed as described ea
This procedure can be used to collect time-varying spe
samples at each coronal slice angle for use in 3D tim
motion reconstructions of the tongue surface during spe
The midsagittal data can be used in the reconstruction
well.

Second, the transducer must be positioned in an accu
and precise manner. A positional error of a few degrees
one slice will reduce significantly the capture of local sha
features such as dimples and degree of grooving. Altho
not addressed in this paper, a 3D automated head and t
ducer support system~AHATS! based on the currently use
2D head and transducer support~HATS! system~Stone and
Davis, 1995! is under construction. This system uses co
puter~or manually! controled positioning of the transducer
predetermined angles for collection of real-time sagittal a

FIG. 9. Sagittal contours of the tongue for subject 5 showing that the de
set~dashed! fails to measure the contours for one sound at three~the solid or
more points, while the optimal set does intersect each contour at thre
more points.
2866 J. Acoust. Soc. Am., Vol. 106, No. 5, November 1999 A
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coronal motion. Manual transducer positioning is accepta
if predetermined slice positions are calculated accurat
and precision of transducer placement is assured.

The third issue of importance is reconstruction accura
of 3D shape and motion. Global reconstruction was op
mized by minimizing the maximum and standard deviati
errors. As a result, the average errors were below the m
surement error for ultrasound. The largest maximum er
for all 19 sounds was 1.40 mm, which occurred in /}/ one
time on an extreme edge. The greatest standard devia
error was 0.44 mm, which occurred for /i/. Errors above 1
mm occurred exclusively at the most lateral edge, and er
above 1.0 tended to occur in the posterior most row.

Optimized reconstructions also need to represent lo
features well, such as asymmetry, local depressions,
steep slopes. Optimization improved representation of lo
features compared to equidistant slices. Midsagittal opti
zation further improved midsagittal features. The first fe
ture, tongue asymmetry, is more prevalent in tongue mo
than in static data and so will be even more important
future studies. Left-to-right rotation and a ‘‘leading edge
are seen fairly often in coronal ultrasound images of spee
These asymmetries do not vary systematically with pala
shape, or handedness~Hamlet, 1987!; they are more preva
lent in some subjects and some tasks, however. When
slice selection is based on midsagittal points, asymmet
cannot be taken into account, since no lateral information
available. However, leading edges and left-to-right rotatio
extend across a fairly long region of the lengthwise tong
and, therefore, should be captured by one or more sp
slices. Future research will continue to carefully assess e
in representation of asymmetry using the current method

The second feature, local tongue depressions or dimp
was visible in this data set for nonhigh back vowels and
They have been observed fairly often in other ultrasou
data sets~Davis, 1996; Fig. 1! and can be inferred from som
point tracking data@Stone, 1990~Table I!# and MRI data
~Kumadaet al., 1992; Niitsuet al., 1992! as well. They tend
to appear in the ‘‘middle’’ segment of the tongue~approxi-
mately 2.5–4 cm back from the protruded tip! ~cf. Stone,
1990!. The present 3D reconstructions captured dimples v
accurately because dimples occur at midline and the
point sparse set optimized their representations.

Accurate representation of steep slopes was the t
feature examined in the reconstructions. Front raised sou
~e.g., high front vowels! have a very advanced tongue roo
This is due to genioglossus posterior~GGP! contraction,
which causes a deep posterior groove defined by a s
slope midsagittally and laterally. Anteriorly, the tongue su
face is high and flat, or even arched. Therefore, a sharp
flection point in the midsagittal profile separates the ante
arch from the posterior groove. Choosing a point too
from the inflection point will cause a serious underestimat
in the slope magnitude and origin point. Moreover, duri
changes from front raising to other shape categories, suc
back raising, 3D motion reconstructions from inappropriat
selected slices will misrepresent and reduce the accurac
the deformation.

One type of ‘‘error’’ is utterance-to-utterance variatio

lt

or
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or free variation. Humans do not produce repeated spe
sounds identically. We expect that the induced variation
shape between the /l1 / and /l2 / ~1.63-mm maximum differ-
ence! is the same size or larger than would occur in fr
variation and is consistent with systematic differences du
morphological constraints. If so, such differences would
larger than the maximum measurement error~1.40 mm!
caused by using the sparse data set and should be well
resented, especially if the important features occur at m
line.

The current sparse set criteria minimize the problem
accurate 3D tongue reconstruction from a sparse slice se
can be seen from the maximum and standard deviation e
in Table II. The standard deviation errors seen in the d
were no worse than typical measurement error. The m
mum errors~above 1.3 mm! were seen on the edges. O
expectation is that the selection of fairly equidistant slic
and the optimization across all the lingual sounds in Engl
will continue to provide as reasonable a 3D coverage a
possible.
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