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Analysis of 3-D Tongue Motion From Tagged
and Cine Magnetic Resonance Images

Fangxu Xing,a Jonghye Woo,b Junghoon Lee,a,c Emi Z. Murano,c

Maureen Stone,d and Jerry L. Princea

Purpose: Measuring tongue deformation and internal
muscle motion during speech has been a challenging task
because the tongue deforms in 3 dimensions, contains
interdigitated muscles, and is largely hidden within the vocal
tract. In this article, a new method is proposed to analyze
tagged and cine magnetic resonance images of the tongue
during speech in order to estimate 3-dimensional tissue
displacement and deformation over time.
Method: The method involves computing 2-dimensional
motion components using a standard tag-processing
method called harmonic phase, constructing superresolution
tongue volumes using cine magnetic resonance images,
segmenting the tongue region using a random-walker

algorithm, and estimating 3-dimensional tongue motion
using an incompressible deformation estimation algorithm.
Results: Evaluation of the method is presented with a
control group and a group of people who had received
a glossectomy carrying out a speech task. A 2-step
principal-components analysis is then used to reveal the
unique motion patterns of the subjects. Azimuth motion
angles and motion on the mirrored hemi-tongues are
analyzed.
Conclusion: Tests of the method with a various collection
of subjects show its capability of capturing patient motion
patterns and indicate its potential value in future speech
studies.

The human tongue is highly deformable during
speech and is able to perform precise motion over
short periods of time because of its complex internal

muscle architecture (Abd-el-Malek, 1955; Takemoto, 2001).
Studying the motor control of the tongue muscles, includ-
ing their interaction and cooperation for producing speech,
has always been an interesting topic for oral surgeons, lin-
guists, and speech-language pathologists. This is because
the tongue, which is a volume-preserving structure devoid
of bones and joints, moves entirely by deformation to create
the shapes critical to speech, chewing, and swallowing
(Maton, 1997). Therefore, developing a fast and accurate
method for quantitatively analyzing tongue motion from
medical imaging has always been an important topic to aid
in speech studies.

The goal of the present research is to create and test
a method to extract three-dimensional (3-D) tissue-point

motion from within the tongue and use it to distinguish
between glossectomy and control motion patterns in an
interpretable way. Magnetic resonance imaging (MRI) is
capable of revealing both anatomical structures and tissue
motion. The internal motion of the tongue muscles has
been captured by tagged MRI (Parthasarathy, Prince, Stone,
Murano, & NessAiver, 2007). Through spatial modulation
of the electromagnetic field, magnetic tags can be placed
within the tissue and then deform with the tongue as it
moves. Such deformed tag patterns contain motion in-
formation that is reconstructed by processing a sequence
of tagged MRI acquired over time. Although tagged MRI
captures motion well, it provides only low-resolution anatom-
ical information at tissue–air boundaries. Therefore, in the
present imaging protocol, an additional image sequence—a
cine-MRI sequence without tags—is collected at the same
positions and same time instances during additional repeti-
tions of the motion cycle. These images can be used to
segment the tongue region.

A few immediate difficulties follow the data acquisi-
tion. First, tagged MRI contains motion information
only in two dimensions, and multiple orientations must
be combined to produce 3-D motion. Second, manual
segmentation of multiple cine-MRI slices in multiple time
frames (a typical number of images is ~800 slices per sub-
ject) is a time-consuming task. Third, due to the limitations
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in the acquisition process and the nature of tagged MRI,
the tongue’s motion can only be sampled at sparse spatial
locations and relatively low resolution (Zerhouni, Parish,
Rogers, Yang, & Shapiro, 1988). Therefore, for consistent
scientific study and potential clinical use, there is a need
for automated methods to quantify the tongue’s motion in
an efficient way. Moreover, after obtaining estimates of
the 3-D tongue motion from multiple subjects in the same
speech task, it remains challenging to analyze the resulting
data in order to reveal population similarities and differ-
ences. The inconsistent speaking rate between subjects,
for example, is a major obstacle. Therefore, a method is
needed to provide a time alignment of the displacement
data. The high dimensionality of the time sequences of 3-D
displacements is another obstacle. Therefore, another
method is needed to perform dimensionality reduction so
that population analysis can be readily carried out.

Among various subjects, the motion of people who
have received a glossectomy—a surgery to remove a malig-
nant section of the tongue—is of special interest, because
these people have altered tongue morphology and may
combine unusual motor control strategies for speech (cf.
Nicoletti et al., 2004). The National Cancer Institute esti-
mates that 48,330 people in the United States develop oral
or oropharyngeal cancer per year and that 9,570 of these
people will die from it (American Cancer Society, 2016).
Tumor size and location are the two most important factors
that affect speech (Heller, Levy, & Sciubba, 1991; Nicoletti
et al., 2004; Pauloski et al., 1998). The data set used in this
article controls for tumor location by including only sub-
jects with a unilateral tumor occurring just behind the
tongue tip. People with both small and moderate-sized
tumors, up to 4 cm long, are included, and the effects of
tumor size on motion pattern are considered. Moreover,
reduced control in the tip on the resected side may cause
additional motion differences between subjects in the glos-
sectomy group and the control group. Tongue-tip fricatives
such as /s/ are more challenging for these people (Heller
et al., 1991), so the speech task includes the sound /s/. In a
word, understanding the motion differences made by peo-
ple who have and have not received a glossectomy will
assist surgical decisions as well as speech and swallowing
remediation. Therefore, the present article aims to provide
a new and useful tool for learning typical motor control
and adaptive behaviors used by people who have received
a glossectomy to compensate for morphological changes.

Previous methods have been proposed for the com-
putation and analysis of 3-D motion from tagged MRI.
However, most have been developed with the heart as the
target organ, and therefore processing tongue data of this
type requires novel techniques. There have been some well-
established algorithms to handle some steps toward the
final goal: the harmonic phase (HARP) algorithm (Osman,
McVeigh, & Prince, 2000) for computing 2-D motion from
tagged data; the incompressible deformation estimation
algorithm (IDEA; Liu et al., 2012) for estimating 3-D mo-
tion from the HARP result; the superresolution methods
(Woo, Murano, Stone, & Prince, 2012) for building 3-D

tongue volumes; segmentation algorithms for providing
automatic or semiautomatic labeling of the tongue region
(Grady, 2006; Han, Xu, & Prince, 2003); and principal-
components analysis for dimensionality reduction of popu-
lations of vector fields (Stone, Liu, Chen, & Prince, 2010).
The proposed method, called TMAP for tongue motion
analysis pipeline, incorporates all of these steps in a care-
fully optimized semiautomatic pipeline that also includes
steps for time alignment and a population analysis. TMAP
is evaluated with a data set from 16 people in a control
group and five people who have received a glossectomy
completing a specific speech task. The efficacy of TMAP is
demonstrated and its potential for quantitative motion ana-
lysis of the tongue is revealed.

Method
As illustrated in Figure 1, the input to TMAP was

tagged and cine MRI data. The output was the 3-D motion
field and multisubject statistical-analysis result. The entire
TMAP was implemented within in-house HARP 5 soft-
ware with user interfaces that were based on MATLAB
(MathWorks, Natick, MA). Each method in the pipeline
is described in the following sections.

Subjects and Speech Material
Subjects in this study were five people who have

received a glossectomy and 16 who have not. Four of the
subjects in the glossectomy group had small (T1) tumors,
and the fifth had a midsize (T2) tumor. The T1 tumors
were removed with a glossectomy and the wound closed
by sutures. The wound from the T2 tumor was closed
by adding external tissue, a radial-forearm free flap, to
replace the resected mass. The speech material was the

Figure 1. Flowchart of the tongue motion analysis pipeline (TMAP).
MRI = magnetic resonance imaging; HARP = harmonic phase
algorithm; IDEA = incompressible deformation estimation algorithm;
PC = principal components; PCA = principal-components analysis.
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phrase “a souk” (IPA: /ə’suk/), which was designed to
elicit specific tongue motions. The phrase started with /ə/, a
centralized tongue position; moved into /s/, where forward
tongue motion was expected to be prominent; and ended
with /k/, where upward tongue motion was expected to be
prominent.

Because subjects needed to repeat the speech materials
to a metronome in the MRI scanner, they were trained,
prior to entering the scanner, to speak to the same metro-
nome beat for about 15 min. The four-beat metronome
sequence represented the two syllables of the speech task
plus an inhalation and exhalation. Thus, every motion of
the oral cavity was timed as precisely as possible.

Data Acquisition
MRI scanning was performed on a Siemens 3.0T

Tim Trio system (Siemens Medical Solutions, Malvern,
PA) with a 12-channel head coil and a four-channel neck
coil using a segmented gradient-echo sequence. The field
of view was 240 × 240 mm with an in-plane resolution of
1.87 × 1.87 mm and a slice thickness of 6 mm. Each data
set contained a sagittal, coronal, and axial stack of images
encompassing the tongue and surrounding structures. The
image sequence was obtained at the rate of 26 time frames
per second.

The MRI recording session lasted for about 1 hr. The
MRI machine collected a very weak signal, namely the
number of hydrogen protons in each unit of tissue. There-
fore, multiple repetitions of a speech utterance needed to
be collected and summed to generate a single time series
showing tongue motion. To sum the cine MRI data, five
repetitions were needed per slice. For the tagged MRI data,
three repetitions were needed per slice. In addition, data
for each tag direction (superior–inferior, anterior–posterior,
left–right) were collected twice, once for a sinusoidal and
once for a cosinusoidal tag pattern (see NessAiver & Prince,
2003). The number of slices depended on the size of the
subject’s tongue and ranged as follows: sagittal—five to
nine slices; coronal—10 to 14 slices; axial—10 to 14 slices.
Pauses were allowed after each set of slices so that con-
secutive acquisitions contained 15 to 42 repetitions for tagged
acquisitions and 25 to 70 repetitions for cine acquisitions
(Parthasarathy et al., 2007).

HARP Algorithm
Complex-valued tagged MRI (see Figure 2A) was

combined using either the CSPAMM or MICSR (NessAiver
& Prince, 2003) method, yielding images with two major
harmonic peaks in the Fourier domain (see Figure 2B).
The HARP algorithm (Osman et al., 2000) filtered one of
the second-order harmonic peaks with a bandpass filter,
took the phase part of the resulting complex image (see
Figure 2C), and tracked each pixel’s phase value over time
by assuming that the phase of a fixed tissue point stayed
constant. In practice, both horizontally and vertically tagged
images were processed to obtain motion components in two

in-plane directions so that the HARP algorithm provided
a dense in-plane 2-D motion field (see Figure 2D). Due to
phase wrapping (Liu & Prince, 2010; Osman et al., 2000),
the HARP algorithm could fail by tracking a “jumped”
tag when a tissue point made larger movements than com-
monly seen in the tongue. Thus the shortest-path HARP
refinement (Liu & Prince, 2010) method was used to reduce
this type of error. In the end, the HARP algorithm yielded
a collection of 2-D vector-valued images, each represent-
ing the 2-D projection of the 3-D motion occurring from the
current time frame to the initial time frame when the tags
were applied.

Superresolution Tongue-Volume Reconstruction
Cine MRI was used to provide anatomical information

for tongue segmentation (see Figure 3). Because of the
need to acquire data rapidly during speech and to maintain
a high overall signal-to-noise ratio, cine images were acquired
in the same positions with the same relatively large slice
thickness as the tagged MRI data. Any single stack of cine
MRI could not be used for high-resolution segmentation
because of the poor through-plane resolution. Therefore,
the entire collection (axial, sagittal, and coronal) was com-
bined using superresolution methods into a single image
on a 3-D grid whose voxel resolution was the same as the
original 2-D in-plane resolution. To be specific, the SUPERV
algorithm (Woo et al., 2012) was used to obtain one super-
volume at each time frame.

Random-Walker Segmentation
In order to constrain the analysis to the tongue region

only, a segmentation of the tongue was carried out using
the supervolume images. Despite the improved quality of
the supervolume over the cine images, it remained helpful
to introduce manual guidance at this stage. The random-
walker algorithm (Grady, 2006) was applied; it is a graph-
based algorithm to find a global optimal probabilistic
solution for multilabel image segmentation. In practice,
a user specified (by drawing) a small number of pixels as
seeds within predefined structures (labels), such as the ton-
gue and the background. Each unlabeled pixel was then
assigned to the label with the greatest probability in such
a way that a random walker starting at this pixel would
reach one of the seeds with this label.

In TMAP, a human user was required to input
seeds on a few slices (six to nine) of the cine images at one
time frame. The user-given seeds were then propagated by
deformable registration (Vercauteren, Pennec, Perchant,
& Ayache, 2009) to additional user-determined time frames
at the same slice location (in this case, four time frames
uniformly distributed over 26 time frames). For the remain-
ing time frames, seeds were automatically generated by
(a) segmenting a 3-D temporal stack using the random
walker and (b) using the skeleton (Ronse, Najman, &
Decencière, 2005) of the temporal segmentation as seeds (see
Figure 4A). After seeds were found for all time frames at this

470 Journal of Speech, Language, and Hearing Research • Vol. 59 • 468–479 • June 2016



slice location, they were exported to the 3-D supervolume
space and the random walker was computed, yielding the
final segmentation (see Figure 4B). During this process, the
user was allowed to validate and correct the propagated
and automatically generated seeds. For more details of the
segmentation process, we refer readers to Lee et al. (2014).
As a final step, the 3-D tongue masks were used to cut the
2-D in-plane motion at the positions where they intersected
the slice plane, leaving the 2-D motion only on the tongue
region as input for the incompressible deformation estima-
tion algorithm in the next step.

IDEA
The segmented 2-D motion slices from tagged data

were viewed as multiple observations about the underlying
3-D motion (see Figures 5A and 5B). However, each

observation was an in-plane 2-D projection of the true 3-D
motion and was spatially sparse due to the low through-
plane resolution. To reconstruct a dense 3-D motion esti-
mate, interpolation was required. Because the tongue
is an incompressible muscular hydrostat (Kier & Smith,
1985), the desired dense 3-D motion field should be vol-
ume preserving, and this provided a key constraint. The
IDEA incorporated these sparse and incomplete projec-
tions as well as the incompressibility constraint by using
a divergence-free vector spline (Liu et al., 2012). To be
specific, it reconstructed a sequence of divergence-free
velocity fields over small time steps so that the integrated
velocities yielded the observed HARP displacements to
good approximation. Because the IDEA was computation-
ally demanding, the segmented 3-D tongue mask alleviated
the problem by letting it compute only on the tongue re-
gion, yielding a desired 3-D motion field. Figures 5C and
5D show the estimated 3-D motion from Figures 5A and
5B, respectively. The color diagram at the left shows that
anterior–posterior motion is green, superior–inferior mo-
tion is blue, left–right motion is red, and intermediate
motion directions are RGB-valued combinations of these
colors.

Multisubject Data Normalization
Due to variable speaking rates among different sub-

jects, displacement fields had to be computed relative to
a common position before their motions from the results
of IDEA could be compared. Because the first time frame
of “a souk” was generally an unpredictable position of the
tongue as it moved into /ə/, and because the deformation
following /ə/ was a forward motion into /s/ and then an
upward motion into /k/, the midcentral schwa /ə/ was used
as the common reference frame to compare motion across
subjects (Kent & Read, 2002). Therefore, the reference
frame was switched from time frame 1 to the maximum /ə/
position. Two speech scientists examined the raw data
independently to determine the position of the schwa,
which was defined as the time frame prior to the beginning
of the forward motion. Afterward, they consulted on the
result and a consensus was established. Figure 6 (discussed
later) shows the realignment of time frames, on the basis
of the schwa, from the original speech for each subject (see
Figure 6B) to the aligned time frames (see Figure 6C).

Figure 2. (A) Tagged sagittal tongue image. (B) Fourier domain of the tagged image. (C) Harmonic phase image from the filtered peak. (D) 2-D
motion field from the harmonic phase algorithm displayed on a 3-times-sparser grid.

Figure 3. Cine supervolume reconstruction by the SUPERV
algorithm.
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The mathematical details for switching reference time
frames are discussed in the following. For each subject,
the sequence of 3-D vector fields obtained from the output
of the IDEA is denoted {D1,1(X1), D1,2(X1), . . ., D1,26(X1)}.
Each vector field D1,t(X1), as visualized in Figure 5, shows
the displacement from time frame 1 (default reference frame)
to the current time frame t. The symbol X1 represents the
3-D grid located at time frame 1 (a Lagrangian representa-
tion is used). If the vector field D1,t(X1) is considered as
arrows, they grow from the grid locations X1 at time frame 1
and end up pointing at the nongrid locations in the current
time frame t.

Suppose the centralized prespeech position /ə/ happens
at time frame r. At an arbitrary time frame t, related mo-
tion fields are D1,r(X1) and D1,t(X1). If the inverse field of
D1,r(X1)—namely Dr,1(Xr)—can be found, their intermediate
field can be composed by

Dr;t X rð Þ ¼ Dr;1 X rð Þ þD1;t X r þDr;1 X rð Þ
� �

ð1Þ

where Xr is now the grid on the new reference r.
Because the field D1,r(X1) is discrete, then from the

definition of an inverse field, at time frame r it is true that
Dr,1(X1 + D1,r(X1)) = −D1,t(X1). To find the value of Dr,1

at Xr, a fixed-point method (Chen, Lu, Chen, Ruchala,
& Olivera, 2008) was applied by iteratively solving the
equation

Dr;1
nð Þ X rð Þ ¼ −D1;r X r þDr;1

n−1ð Þ X rð Þ
� �

ð2Þ

where n is the iteration. Thus, through substitution of the
converged result of Equation 2 into Equation 1 and repeti-
tion for every time frame, a new sequence of displacement

fields {Dr,1(Xr), Dr,2(Xr), . . ., Dr,26(Xr)} can be found for
every subject starting at time frame /ə/.

Two-Step Principal-Components Analysis
A two-step principal-components analysis (PCA) was

used to differentiate the subjects in the control and glos-
sectomy groups in this study. First, a PCA (PCA-1) was
done for the control group only and a control motion PC
(principal-components) space was obtained. All of the mo-
tions of the subjects in the glossectomy group were then
projected onto these PCs to identify and extract the motion
patterns identical to those of the subjects in the control
group. A second PCA (PCA-2) was performed on the re-
maining variance of the subjects in the glossectomy group
to account for the motion patterns that were unique to
them. The mathematical details of the PCA procedure are
presented in the following.

First, the PCA required a certain tongue-motion
quantity to be in the same frame of reference. Although all
displacement fields had been regularized to be with respect
to /ə/, different subjects’ tongue shapes varied widely. There-
fore, the tongue region was divided into eight volumes of
interests (VOIs) by separating from the volume’s center
planes (see Figure 6A). The motion field inside each VOI
was averaged to produce one vector to represent its general
motion (see Figure 6B), denoted {dr,1, dr,2, …, dr,26}v, where
v is the VOI number (1 through 8). These VOIs were
treated independently in the following processing.

Because only the periods from /ə/ to /s/ to /k/ were of
interest, a common time interval was created by taking the
average motion between these two periods and then using
cubic spline (Fan & Yao, 2003; denoted cspline in Equa-
tion 3) to interpolate them into 17 time frames for all sub-
jects, where /ə/ was at time frame 1, /s/ was at time frame 7,
and /k/ was at time frame 17. Denoting the time-frame

Figure 4. (A) Seed propagation in time and segmentation of temporal stack. (B) Segmentation of the supervolume.
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subscripts of maximum /ə/, /s/, and /k/ positions as a, s,
and k, we have

d̂ 1;1;…; d̂ 1;7;…; d̂ 1;17

n o
v
¼ cspline da;a;…; da;s;…; da;k

� �
v

ð3Þ
For any VOI, d̂ 1;t was the interpolated mean motion

that put all subjects’ motions in the same framework and
ready for PCA (see Figure 6C). Denoting the subject num-
ber with i, the mean motion of all 17 frames was stacked
into one vector,

d̂
i ¼ d̂

i

1;1;…; d̂
i

1;7;…; d̂
i

1;17

h i
ð4Þ

which existed in a 3 × 17 = 51-dimensional space. The
physical meaning of d̂ i was all motion both in space and in

time of subject i while performing the complete speech task
of “a souk.” Note that in this way, the method avoided
treating each time frame independently. Instead, the entire
speech task was considered as an evaluation of the subject’s
speech function.

Denoting the control-group subject number with C,
PCA-1 on these subjects required the following steps: (a) sub-

tracting the mean of controls ŝi¼ d̂
i
−meanfd̂ 1

;…;d̂
i
;…; d̂

Cg;
(b) computing the covariance matrix of the subtracted mo-
tion COV = [ŝ1,…, ŝ i,…, ŝC][ŝ1,… ŝ i,…, ŝC]T; and (c) finding
the eigen-decomposition of COV to get C − 1 principal-
component directions {e1, …, eC− 1} and principal values
{P1,…, PC−1}. To evaluate this PC space to see if it was able
to distinguish motion between subjects in the control and
glossectomy groups, motion from a test group of subjects
in the control group and all the subjects in the glossectomy

Figure 5. 3-D motion estimation by the incompressible deformation estimation algorithm. (A) Harmonic phase algorithm input at /s/ for the
control group. (B) Harmonic phase algorithm input at /k/ for the control group. (C) 3-D motion at /s/ for the control group. (D) 3-D motion
at /k/ for the control group. (E) 3-D motion at /s/ for the glossectomy group. (F) 3-D motion at /k/ for the glossectomy group. Cones are color-
coded by motion directions as shown in the color diagram (red for left–right, blue for superior–inferior, green for anterior–posterior). Cone size
is motion magnitude.
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group was projected onto these PCs. This result was unsatis-
fying, however, because it showed the similarities between
subjects in the two groups instead of the unique features of
those in the glossectomy group. Therefore, PCA-2 was intro-
duced to solve this problem. Because the first PC space had
a rank of C − 1 and the entire space had 51 dimensions, the
remaining 51 − (C − 1) principal directions could be vectors
generated by any feasible orthogonalization method (e.g.,
the Gram–Schmidt process). This remaining space with
51 − (C − 1) dimensions contained only the motion of the
subjects in the glossectomy group because ideally those in
the control group should project a 0 PC score in this space.
Denoting the glossectomy-group subject number with P,
the motions of those subjects, indexed by j (1 ≤ j ≤ P) after
being subtracted with all controls’ mean motion, were used
to compute those subjects’ part that was identical to the
control group by projecting onto the PCA-1 space; that is,

ŝ j ¼ d̂
j �mean d̂

1
;…; d̂

i
;…; d̂

C
n o

ð5Þ

ŝ jcontrol ¼ ŝ j
� �T

⋅ e1
� �

e1 þ…þ ŝ j
� �T

⋅ eC −1
� �

eC −1 ð6Þ

The remaining motion was considered unique to the subjects
in the glossectomy group and was given by

ŝ jpatient ¼ ŝ j � ŝ jcontrol ð7Þ

Then the covariance matrix of ŝ jpatient was computed
and its eigen-decomposition was used to get P more vectors
as the PC directions for glossectomy-group subjects’ motion
{u1, …, uP}. Taken together, {e1, …, eC− 1, u1, …, uP}
were generated from a two-step PCA to represent the
control-group and glossectomy-group motion parts and
are referred to, respectively, as primary and secondary
PC spaces in the following. Note that the reason the rank
of the secondary PC space was P instead of P − 1 is that
the mean motion of the control group was subtracted in
Equation 5 so that the glossectomy group’s motions were
not zero centered. The entire purpose of building the sec-
ondary PC space was to use it to contain the glossectomy
group’s unique motion pattern and to separate it from its
part that was like the motion of the control group. After
the two-step PCA, any new subject’s motion was projected
onto {e1, …, eC− 1, u1, …, uP} to compute its primary
and secondary PC scores for the purpose of evaluating
its control-group-like and glossectomy-group-like motion
patterns.

Results
Evaluation of Azimuth Motion Angle

The first purpose of applying TMAP to the 21 subjects
was to determine whether those in the glossectomy group
had more left–right motion than those in the control group.
As an example, the motion of a subject from the control
group and one from the glossectomy group at critical time
frames /s/ and /k/ are shown in Figures 5C–5F. For the

Figure 6. (A) Division of eight volumes of interest in the tongue. (B) An example using VOI-1: Average motion of 26 frames and all subjects.
Horizontal line divides control group (bottom) and glossectomy group (top). Vertical curves are at time frames /ə/, /s/, and /k/. (C) Interpolated
motion between time frames /ə/ and /k/ from (B). Horizontal line divides control group (bottom) and glossectomy group (top). Vertical lines are
at time frames /ə/, /s/, and /k/.
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subject in the control group, both forward and upward
motions were symmetrical (only blue or green), whereas
the motion of the subject in the glossectomy group contained
more left–right motion, shown by red and purple cones.
After multisubject data regularization, each subject’s average
motion was interpolated using Equation 3. For the subjects
in the glossectomy group, if their tumors were on the right
side at VOI-2, their tongues were symmetrically flipped
along the midsagittal plane so that the tumor side was mir-
rored to the left and became VOI-1. If their tumors were orig-
inally on the left side at VOI-1, the data were left unflipped.
The azimuth angle ϕ between the motion vector and the
midsagittal plane (angle tilted to the left or right of the
anterior direction) was computed at every time frame; its
magnitude reflected motion asymmetry (see Figure 7). We
studied ϕ from time frames 4 through 17 because the mo-
tion magnitude in the first three time frames was nearly 0,
so that noise dominated over angle computation. Figure 7
shows an example of the |ϕ| values at the tongue tip (VOI-1
on the left tip and VOI-2 on the right tip). Note that the
|ϕ| value stayed small for the control group in general,
whereas it became large or inconsistent for most of the glos-
sectomy group. For all eight VOIs, the ϕ angle is shown
in degrees in Table 1 as the mean, standard deviation,
and median across all time frames. In VOIs-1 through 4
(anterior tongue), the subjects in the glossectomy group
had a larger angle and standard deviation than those in
the control group. A paired Student’s t test was performed
with independent variables of the control and glossectomy
groups and a dependent variable of ϕ value for all four
anterior VOIs and all time frames: t(55) = −9.57, p < .01,
effect size = .79. The test proved that in the anterior tongue,
subjects in the control group used less left–right motion
compared with the subjects in the glossectomy group, who
had strong evidence of left–right asymmetry. However, for
VOIs-5 through 8 (posterior tongue), although the standard
deviation was mostly higher in the glossectomy group, the
mean and median showed less difference, and the results
were not significant (p = .48).

Test of Two-Step PCA on the
Mirrored Hemi-Tongue

The two-step PCA strategy on this data set of 16 sub-
jects in a control group and five in a glossectomy group
was first applied on the whole tongue, yielding 15 primary
PC directions and five secondary PC directions. In Figures 8A
and 8B, the PC directions and PC weights of VOI-1 are
shown as an example of the PC space’s appearance. Other
VOIs were processed independently in the same fashion.
Figures 8A and 8B demonstrate that visual assessment of
the PC space was difficult, although motions in the glos-
sectomy group looked different from those in the control
group and seemed to contain more inconsistent motion
patterns. Because this was an ideal setup of the two-step
PCA, where all subjects in the control group were used to
build the primary PC space, Figures 8C and 8D show a
perfect outcome: the control group loaded in only the primary
space and the glossectomy group loaded in both spaces. In
constructing an efficient test of the method, a result similar
to this ideal situation should be expected: Subjects in the
control group should load smaller and closer to 0 than those
in the glossectomy group in the secondary PC space.

Thus, a mirrored-hemi-tongue experiment was per-
formed to test the efficacy of the two-step PCA strategy.
Because the tongue motions of the 16 subjects in the con-
trol group were generally symmetric, the right sides of all
their tongues (VOIs-2, 4, 6, and 8) were mirrored to the
left (VOIs-1, 3, 5, and 7), overlaid on top of the left-side
motion, and averaged with the left side for each time frame.
This yielded 16 subjects in the control group with only
the left four VOIs. For the five subjects in the glossectomy
group, because their glossectomy was performed on only
one side (either left or right) of the tongue, their tongues
were no longer symmetric and their data should not be
averaged. Therefore, after their right hemi-tongues were
mirrored to the left, the result was five resected hemi-tongues
and five native hemi-tongues, both appearing to be the
left four VOIs. The resected group was named Patient

Figure 7. Azimuth motion angle |ϕ| of 16 control-group subjects and five glossectomy-group subjects on the resected and native tongue parts.
Each curve is a subject. (A) Controls at VOI-1. (B) Controls at VOI-2. (C) Patients at VOI-1. (D) Patients at VOI-2. VOI = volume of interest.
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Glossectomy Side (PGS) and the native group was named
Patient Native Side (PNS).

With these modified data on hemi-tongues, the two-
step PCA was performed four times, once for each VOI,
using 11 of the subjects in the control group as training
data to build the primary PC space and leaving five as
test data (control-group tests). The five PGS subjects were
then used to create the secondary PC space. Following the
presented procedure, 10 primary PC directions and five
secondary PC directions were obtained for each VOI. Then
the three subject groups (five control-group tests, five PGSs,
and five PNSs) were projected onto the secondary PCs.
The first two secondary PC weights of all three subject
groups for all four VOIs are shown in Figure 9. The solid
blue dot represents zero weight, for no glossectomy-group
motion. The green dots, which are control-group tests, show
smaller loading values closer to the center 0. The glossect-
omy group had higher loadings in both the PNS (crosses)
and PGS (circles) subgroups because both sides of the
tongue showed patterns different from those of the control
group (see Figure 7, for example).

A final PCA was done using all combinations of
control-group subjects in the testing and training groups.
The choice of training control-group subjects from the
whole group (16 choose 5 is 4,368 possibilities) was ran-
domized, thus randomizing the construction of the primary
and secondary PC spaces. The hemi-tongue experiment
was repeated in 4,368 permutation tests for all possible
forms of the PC spaces, keeping five control-group subjects
in the test group to compare with the PGS and PNS groups.
For each PC space, the three groups’ motions were pro-
jected onto the secondary PC space to compute their PC
weights for the part like the glossectomy group. The average
PC weights for the part like the glossectomy group of all
combinations and all VOIs are box plotted in Figure 10.
The mean of the control-group tests’ secondary weights was
lower than that of both the PGS and PNS groups for all
4,368 cases, Student’s t = −473.23, p < .01, effect size = .98.
Despite the small amount of training data, this analysis
was capable of distinguishing motions in the control group
from those of both the native and resected hemi-tongues in
the glossectomy group.

Discussion
The azimuth motion angle experiment was intended

to test the assumption that the subjects in the glossectomy

group had more left–right asymmetric motions than those
in the control group. The control-group subjects’ production
of “a souk” used predominantly symmetrical motion as
it moved forward to /s/ and then upward to /k/. Figure 8A
shows no lateral (red) motion until PCs 6 and 7, after almost
99% of the variance has been accounted for. Thus, the
left–right asymmetric motion seen in Table 1, in the floor
of the mouth (VOIs-3, 4, 7, and 8), represented a small
amount of motion. Figure 10 shows greater asymmetry in
the PC loadings for P2 and P5, who had quite dissimilar
motion in the PGS versus PNS tongue root (VOI-7). Thus,
some but not all of these people with small tumors moved
more asymmetrically than the control-group subjects did.

Table 1 and the corresponding statistical test show
that for the presented small number of subjects in the glos-
sectomy group, their tongue motion was noisier and less
predictable than that of the control group, producing a
larger amount of left–right asymmetry. From the tempo-
rally averaged motion of all VOIs, the azimuth angle of
the glossectomy group’s tongues always had greater value
and standard deviation than that of the control group at
VOIs-1 through 4, the anterior tongue. Because our study
used only subjects with a unilateral tumor behind the ton-
gue tip, the motor control of the tongue tip was reduced.
Therefore, the anterior VOIs-1 through 4 were expected
to be affected more strongly by surgery than the posterior
part of the tongue, and this was supported by the azimuth-
angle data. For the glossectomy group, the odd-numbered
VOIs were the resected side of the tongue and the even
numbers were the native side. Although the glossectomy
group had more left-to-right rotation than the control
group, the difference in rotation between the resected and
native sides was small—no more than 3°—and reasonable,
because the two sides of the tongue were contiguous and
therefore moved with each other. Figure 7 shows that the
resected side of the tongue behaved in an equally or more
unusual manner than the native side. For example, P1 had
a peak angular motion at time frame 6, which was during
the motion into /s/, and the peak was larger for the native
side. P3 had a large left–right angle on both sides. P5, who
had a free flap, showed a rhythmic left–right alternation
on the resected-flap side, which was echoed to a lesser
extent on the native side. Greater motion on the resected
side was also found by Stone, Langguth, Woo, Chen, and
Prince (2014) and Bressmann et al. (2006). Bressmann
and colleagues have also found poorer motility correlated
with reduced intelligibility (Bressmann, Sader, Whitehill,

Table 1. Mean azimuth angle of motion (in degrees; M ± SD [median]) for the control and glossectomy groups.

Group VOI-1 VOI-2 VOI-3 VOI-4 VOI-5 VOI-6 VOI-7 VOI-8

Control 7.2 ± 5.9
(5.8)

6.4 ± 5.1
(5.6)

9.9 ± 8.3
(7.3)

10.1 ± 7.9
(7.6)

8.5 ± 6.5
(7.2)

8.3 ± 8.8
(4.9)

10.3 ± 9.6
(8.8)

11.9 ± 9.7
(8.0)

Glossectomy 14.8 ± 9.2
(12.7)

14.4 ± 9.8
(12.0)

17.3 ± 19.3
(11.6)

14.2 ± 16.3
(8.8)

11.4 ± 9.6
(9.6)

8.6 ± 9.2
(4.8)

9.9 ± 10.9
(6.2)

11.4 ± 9.7
(8.1)

Note. VOI = volume of interest.

476 Journal of Speech, Language, and Hearing Research • Vol. 59 • 468–479 • June 2016



& Samman, 2004) and greater asymmetry in people who
have received a glossectomy for tongue shape (Bressmann,
Ackloo, Heng, & Irish, 2007) and motion (Bressmann
et al., 2006).

The two-step PCA experiment further revealed the
unique motion pattern in the glossectomy group. Although
the PC space was visually difficult to accurately interpret,
a general pattern on the first few primary PCs starting
from 1 and the first few secondary PCs starting from 16
were recognizable. The primary directions showed little lat-
eral motion until PC 7, indicating a consistent control-group
motion featuring mostly anterior–posterior and inferior–
superior (see Figure 8A). The secondary directions contained
all glossectomy-group motion patterns, showing many red
glyphs that correspond to left–right motion (see Figure 8B).
However, the quantitative evaluation of this result was
achieved using the mirrored-hemi-tongue experiment.

The purpose of the mirrored-hemi-tongue data was
to reveal that both sides of the glossectomy-group subjects’
tongues, native and resected, loaded more highly than the

control-group subjects’ tongues on the secondary PC space.
From 4,368 permutation tests, the efficacy of TMAP was
confirmed by proving that the control group’s motions
were more consistent and stable than the glossectomy
group’s. The mean of the control-group subjects’ energy
like the glossectomy group’s weighted lower than both
the PGS and PNS groups in most VOIs, and two-step
PCA was capable of distinguishing the subtle motion-
variation pattern of the glossectomy group from the con-
trol group. However, PGS and PNS motions were not well
distinguished by the current approach, suggesting that
compensation may be occurring on both sides of the ton-
gue. In a previous study including three people who had
received a glossectomy (Stone et al., 2014), they moved
their resected side to a greater extent than did the people
in the control group, whereas the native side moved simi-
larly to that of the people in the control group. In the
current work, however, the subjects in the glossectomy
group loaded on the secondary PCs in both the PGS and
PNS subgroups, suggesting that both sides of the tongue

Figure 8. Example of the two-step principal-component (PC) directions and PC weights. (A) Primary PC directions from 16 control-group
subjects. (B) Secondary PC directions from five glossectomy-group subjects. (C) Weights on the two PC spaces for control-group subjects.
Each curve is a subject. (D) Weights on the two PC spaces for glossectomy-group subjects.
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used different strategies from those of the control group.
And the higher PNS loading in some VOIs suggests that
these subjects used the native side in a more unusual
manner than the resected side for compensation.

Although the two halves of the tongue may move
asymmetrically, it is likely that the asymmetry is part of a
global control strategy for the tongue, which takes into
account acoustical goals and natural morphological asym-
metries. We do not believe one hemi-tongue is controlled
separately from the other, even for the glossectomy group,
although we do believe that differing and even oppositional
commands can be sent to the two hemi-tongues as part of
a single gesture. This would be similar to walking, skipping,
or hopping, where different commands and timing are
sent to the legs but they are part of a coordinated gesture.
There could also be asymmetries that arise for biomechanical

reasons, such as hard-structure asymmetries or task demands,
where stiffening and rotation can be used to speed up a
motion. Evidence for this comes from two facts besides di-
rect observations. First, chewing requires the tongue to
throw food onto the teeth prior to each chew. To do this,
the tongue elevates one side, rotates laterally, and pushes the
bolus onto the teeth. This rotation is consistent with different
levels of activation types to different sides of the tongue.
Second, coronal ultrasound movies of the tongue show not
only differences in motion on the left and right tongue but
also left–right rotation during speech (Slud, Stone, Smith,
& Goldstein, 2002). Left–right rotation can be produced
as a unified, single motor strategy but requires agonist
muscles on either side of the tongue to activate alternately
rather than simultaneously.

A closer look at Figure 10 with reference to clinical
recordings provided us more information on the potential
compensation strategies used by the subjects in the glos-
sectomy group. As mentioned under Data Acquisition, the
fifth subject in the glossectomy group (PGS 5 and PNS 5)
had different anatomy from the other four subjects in the
group due to his T2 tumor and flap closure, which affected
his motion pattern. He used the mouth-floor muscles
(VOIs-3 and 7) differently, on both sides of the tongue,
yielding a higher loading of secondary PCs. The floor mus-
cles helped move the upper tongue appropriately to shape
the vocal tract and produce good-quality speech, as seen
by the low loadings on the secondary PCs of VOIs-1 and 5
on the upper tongue. This example implies that the second-
ary PCs allowed an explanation of the degree and nature
of a glossectomy-group subject’s unique movement in a
way that was not possible before.

Conclusion
In this article, a workflow of algorithms—TMAP—

was proposed for processing speech MRI data to obtain
a reliable estimate of the motion field. It is semiautomatic
and easy to operate. Methods to achieve effective segmen-
tation, multisubject data regularization, and a two-step
PCA to reveal subtle unique motion patterns were described
in detail. TMAP was tested using a varied collection of
subjects with permutation tests, showing its promising value
in current speech studies and medical applications.

It has been important for the progress of biological
research into the human body to have a pipeline method
suitable for any user that can process tagged and cine
MRI data from the raw images to the final data analysis
and interpretation. Collaboration between medical profes-
sionals and engineers is crucial to providing systems such
as this one. In the past, 3-D motion was difficult to accu-
rately compute, and multiple subjects’ 3-D motion was
mostly interpreted by visual assessment. The introduction
of TMAP enables the computation and two-step PCA-
enabled quantitative analysis, which was the major contri-
bution of this work.

The conversion of tissue-point motion from multiple
2-D orientations into a 3-D data set is challenging, and

Figure 10. Box plot of the average weights on the principal
components (PCs) like the glossectomy group. Three groups on all
volumes of interest are shown: control-group subjects used to test
the PC analysis, glossectomy-group subjects on the glossectomy
side (PGS), and glossectomy-group subjects on the native side
(PNS). In each box, the center bar shows the median and the circle
shows the mean.

Figure 9. Weights on the two major principal components (PCs) like
the glossectomy group for all subjects on all volumes of interest. Blue
dot: the origin and all training control-group subjects used to build the
PC space. Green dots: control-group subjects used to test the PC
analysis. Circles: glossectomy-group subjects on the glossectomy side
(PGS). Crosses: glossectomy-group subjects on the native side (PNS).
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more improvements to the detailed methods of TMAP are
being studied and made. This system involves registration,
segmentation, motion analysis, interpretation, and other
problems of great interest in medical imaging. An upgrade
in any step could lead to an improved system and better
results, which is to be proposed in future studies.
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