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A Sparse Non-negative Matrix Factorization
Framework for Identifying Functional Units of

Tongue Behavior from MRI
Jonghye Woo, Member, IEEE, Jerry L. Prince, Fellow, IEEE, Maureen Stone, Fangxu Xing, Arnold Gomez,
Jordan R. Green, Christopher J. Hartnick, Thomas J. Brady, Timothy G. Reese, Van J. Wedeen, Georges El

Fakhri, Fellow, IEEE

Abstract—Tongue motions in the course of speech or other
lingual behaviors are synergies created by locally deforming
regions, or functional units. Functional units are functional
groupings of local structural elements within the tongue that
compress, expand, and move in a cohesive and consistent manner.
Identifying the functional units using tagged-Magnetic Resonance
Imaging (MRI) provides an insight into the mechanisms of
normal and pathological muscle coordination, potentially leading
to improvement in surgical planning, treatment, or rehabilitation
procedures. In this work, to mine this information, we propose a
graph-regularized sparse non-negative matrix factorization and
probabilistic graphical model framework by learning latent build-
ing blocks and the corresponding weighting map using a set of
motion features from displacements extracted from tagged-MRI.
Our tagged-MRI imaging and internal tissue motion tracking
paradigm provide previously unavailable internal tongue motion
patterns, thus illuminating the inner workings of the tongue
during speech or other lingual behaviors. Spectral clustering
using the weighting map is then performed to determine the
coherent regions defined by the tongue motion that may involve
multiple or undocumented regions. Two-dimensional image data
are used to verify that the proposed approach clusters the
different types of images accurately. Three-dimensional synthetic
and in vivo tongue data carrying out simple non-speech/speech
tasks are used to define subject/task-specic functional units of
the tongue in localized regions.

Index Terms—Tongue Motion, Functional Units, Speech, Non-
negative Matrix Factorization, MRI, Sparsity

I. INTRODUCTION

Finding a suitable representation of high-dimensional and
complex data for a variety of tasks, such as clustering and topic
modeling, is a fundamental challenge in many areas such as
computer vision, machine learning, data mining, and medical
image analysis. Non-negative matrix factorization (NMF) [1],
an unsupervised generative model, is a class of techniques
to find a low-dimensional representation of a dataset suitable
for a clustering interpretation [2]; it also has been used to
transform seemingly disparate features to a common domain.
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Society of America in 2017. Jonghye Woo, Fangxu Xing, Thomas J. Brady,
Timothy R. Reese, Van J. Wedeen, and Georges El Fakhri are with Department
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Arnold Gomez and Jerry L. Prince are with Department of Electrical and
Computer Engineering at Johns Hopkins University.
E-mail: jwoo@mgh.harvard.edu

NMF and its variants involving sparsity have received substan-
tial attention since the seminal work by Lee and Seung [1]
because of its ability to provide an interpretable and parts-
based representation inspired by psychological and physio-
logical observations about the human brain [23]. Specifically,
NMF with a sparsity constraint focuses on data matrices whose
elements are non-negative, allowing to model a data matrix as
sparse linear combinations of basis vectors. In this work, we
are interested in modeling the tongue’s underlying behaviors
using NMF, since non-negative properties of NMF are akin
to the physiology of the tongue as reflected in the matrix
decomposition process. That is, NMF does not allow negative
combinations of basis vectors. This is consistent with the
analysis of muscles, which either have positive activation or
no activation, not negative activation.

The human tongue is a structurally and functionally com-
plex muscular structure, comprising orthogonally oriented and
inter-digitated muscles. The tongue is innervated by more
than 13,000 hypoglossal motoneurons [3], [4]. The complexity
and precision of the voluntary and involuntary movements of
the tongue during the course of speaking, swallowing, and
breathing are invoked by a complex set of neural excitations of
tongue muscles. The tongue muscles interact with one another
to carry out the oromotor behaviors, which are executed by
deforming local functional units in this complex muscular
array. Tongue motions are synergies created by locally deform-
ing regions, or functional units [6], [7]. Functional units are
regions of the tongue that exhibit homogeneous motion during
the execution of the specific task identifying functional units
and understanding the mechanisms of coupling among them
can identify motor control strategy in both normal and adapted
speech (e.g., tongue motion after tongue cancer surgery or
brain injury such as Amyotrophic Lateral Sclerosis (ALS)
or stroke). However, to date, the mechanisms of the muscle
coordination and the relationship between tongue structure and
function have remained poorly understood partly due to the
greater complexity and variability of both muscular structures
and their interactions.

Understanding the subject/task-specific functional organiza-
tion of the tongue requires a map of the functional units of
the human tongue for specific tasks using medical imaging. In
particular, recent advances in medical imaging and associated
image analysis techniques permit the non-invasive imaging of
structural and functional components of the tongue. Magnetic
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resonance imaging (MRI) technologies have shown that a
large number of tongue muscles undergo highly complex
deformations during speech and other lingual behaviors. For
example, the ability to perform non-invasive imaging using
MRI has allowed to image both tongue surface motion using
cine-MRI [8], [9], [10] and internal tissue motion using
tagged-MRI (tMRI) [5]. In addition, high-resolution MRI and
diffusion MRI [25], [24] have provided the muscular and
fiber anatomy, respectively. With advances in computational
anatomy, a vocal tract atlas [11], [12], a representation of
the tongue anatomy, has also been created and validated,
which allows for investigating the relationship between tongue
structure and function by providing a reference anatomical
configuration to analyze similarities and variability of tongue
motion.

In this work, we develop a computational approach to defin-
ing the subject-specific and data-driven functional units from
tMRI and 4D (3D space with time) voxel-level tracking [13]
by extending our previous approach [17]. We describe a re-
fined algorithm including an advanced tracking algorithm and
graph-regularized sparse NMF to determine spatio-temoprally
varying functional units using simple non-speech/speech tasks
and provide extensive validations on both synthetic and in vivo
tongue data. The method integrates a regularization term that
encourages the computation of distances on a manifold rather
than the whole of Euclidean space in order to preserve the
intrinsic geometry of the observed motion data. We assume
a manifold of the data within an NMF approach, thereby
capturing the intrinsic geometry and finding a low dimensional
subspace of the motion features derived from tMRI. Since
standard NMF assumes a standard Euclidean distance measure
for its data, it fails to discover the intrinsic geometry of its
data [23]. Thus, we improve the standard NMF by introducing
a joint regularization scheme to determine the cohesive motion
pattern of the tongue. Both quantitative and qualitative evalu-
ation results demonstrate the validity of the proposed method
and its superiority to conventional clustering algorithms.

We present a fully automated approach to discovering the
functional units using a graph-regularized sparse matrix fac-
torization and probabilistic graphical model framework with
the following main contributions:

• The most prominent contribution of this work is to
use voxel level data-driven MRI (1.875 mm×1.875
mm×1.875 mm) methods incorporating internal tissue
points to obtain subject-specific functional units of how
tongue muscles coordinate to generate target observed
motion.

• This work applies a graph-regularized sparse NMF and
probabilistic graphical model to the voxel level motion
data, allowing us to estimate the latent functional coher-
ence, by learning simultaneously latent building blocks
and the corresponding weighting map from a set of
motion features.

• Our tMRI imaging and internal tissue motion tracking
paradigm bring into light patterns of motion that have so
far been intractable. The proposed approach is scalable
to a variety of motion features derived from motion
trajectories to characterize the coherent motion patterns.

In this work, we consider the most representative features
such as displacements and angle from tMRI.

The structure of this paper is as follows. Related work is re-
viewed in Section II. Section III shows the proposed approach
to determining the functional units. Section IV presents the
experimental results. Section V provides a discussion, and
finally, Section VI concludes this paper.

II. RELATED WORK

In this section, we review recent work on NMF for clus-
tering and functional units research that are closely related to
our work.

NMF for Clustering. A multitude of NMF-based methods
for unsupervised data clustering have been proposed over
the last decade across various domains, ranging from video
analysis to medical image analysis. In particular, the idea
of using L1 norm regularization (i.e., sparse NMF) for the
purpose of clustering has been successfully employed [28].
The sparsity condition imposed on the weighting matrix (or
coefficient matrix) indicates the clustering membership. For
example, Shahnaz et al. [29] proposed an algorithm for
document clustering. The matrix factorization was used to
compute a low-rank approximation of a sparse matrix along
with preservation of natural data property. Wang et al. [31]
applied the NMF framework to gene-expression data to iden-
tify different cancer classes. Anderson et al. [32] presented
an NMF-based clustering method to differential changes in
default mode subnetworks in ADHD from multimodal data.
In addition, Mo et al. [33] proposed a motion segmentation
method using an NMF-based method. A key insight to use
NMF for clustering purpose is that NMF is able to learn and
discriminate localized traits of data with a better interpretation.
Please refer to [19] for a detailed review on NMF for clustering
purpose.

Speech Production. Research on determining functional
units during speech has a long history (see e.g., Gick and
Stavness [14] for a recent review). Determining functional
units is considered as discovering a “missing link” between
speech movements primitives and cortical regions associated
with speech production [14]. In the context of lingual coartic-
ulation, functional untis can be seen as “quasi-independent”
motions [3]. A variety of different techniques have been used
to address this problem. Stone et al. [15] showed that four
midsagittal regions including anterior, dorsal, middle, and
posterior functioned quasi-independently using ultrasound and
microbeam data. Green and Wang attempted to characterize
functionally independent articulators from microbeam data
using covariance-based analysis [6]. More recently, Stone et
al. [3] presented a method to determine functional segments
using ultrasound and tMRI. That work examined compression
and expansion between the anterior and posterior tongue
and found that regions or muscles have functional segments
strongly affected by phonemic constraints. Another key report
is that of Ramanarayanan et al. [16], who used a convolutive
NMF algorithm to determine tongue movement primitives
from electromagnetic articulography (EMA). Our work is
inspired by approaches discussed above and we use far richer
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4D tMRI based tracking data and the augmented NMF frame-
work with the addition of prior information on sparsity and
intrinsic data geometry in defining functional units. Unlike
other approaches that largely rely on the tracking of landmark
points sparsely located on the fixed tongue surface such as
the tip, blade, body, and dorsum, we aim to identify 3D
cohesive functional units that involve multiple, and possibly
undocumented, internal tongue regions.

III. PROPOSED FRAMEWORK

A. Problem Statement

Without loss of generality, let us first define the notations
and definitions used in this work. Consider a set of P internal
tongue tissue points tracked through tMRI, each with n scalar
quantities (e.g., magnitude and angle of each track) tracked
through F time frames. These quantities characterize each
tissue point, which are used to group them into cohesive
motion patterns, functional units. The location of the p-th
tissue point at the f -th time frame can be expressed as (xpf , ypf ,
zpf ). The tongue motion can then be represented by a 3F×P
spatio-temporal feature matrix N = [n1, ...,nP ] ∈ R3F×P ,
where the p-th column is given by

np = [xp1, · · · , x
p
F , y

p
1 , · · · , y

p
F , z

p
1 , · · · , z

p
F ]T . (1)

We cast this problem of determining the functional units as a
motion clustering problem as the functional units are consid-
ered to be regions of the tongue that exhibit homogeneous
motion. However, different from generic motion clustering
problems in computer vision, the tongue’s function and phys-
iology also need to be reflected and captured in our formu-
lation. Thus, the goal is to determine a permutation of the
columns to form [N1| N2| · · · |Nc] , where the submatrix Ni

comprises point tracks associated with the i-th submotion—
i.e., the i-th functional unit. The displacements and derived
motion features for each underlying muscle are not completely
independent; a subset of motion quantities from each muscle
maps to one or more common latent dimensions, which can be
interpreted via our model. These latent dimensions provide a
sparse summary of the generative process behind the tongue’s
motion for a single or multiple muscles. In this work, sparse
NMF is utilized to infer the latent structure of motion features
derived from tMRI. The proposed method is described in more
detail below; a flowchart is shown in Figure 1.

B. MR Data Acquisition and Motion Tracking

1) MR Data Acquisition: All MRI scanning is performed
on a Siemens 3.0 T Tim Treo system (Siemens Medical
Solutions, Malvern, PA) with 12-channel head and 4-channel
neck coil. While subjects are speaking the same word repeat-
edly, the tMRI datasets are collected using Magnitude Imaged
CSPAMM Reconstructed images [26]. The datasets have a 1
second duration, 26 time-frames with a temporal resolution of
36 ms for each phase with no delay from the tagging pulse, 6
mm thick slices (6 mm tag separation), and 1.875 mm in-plane
resolution with no gap. The field-of-view is 24 cm.

Fig. 1. Flowchart of the proposed method

2) Motion Estimation from Tagged-MRI: The phase vector
incompressible registration algorithm (PVIRA) [35] is used
to estimate deformation of the tongue from tMRI, yielding
a sequence of dense 3D motion fields. Although the input
is a set of sparsely acquired tMRI slices, PVIRA uses cubic
B-spline to interpolate these 2D slices into denser 3D voxel
locations. Then a harmonic phase (HARP) [20] filter is applied
to produce HARP phase volumes from the interpolated result.
Finally, PVIRA uses the iLogDemons method [21] on these
phase volumes. Specifically, we denote the phase volumes as
Φx, Θx, Φy , Θy , Φz , and Θz , where x, y, and z denote motion
information from three cardinal directions usually contained
in orthogonal axial, sagittal, and coronal tagged slices. The
volume in the reference time frame is Φ and the volume in
the deformed time frame is Θ. The motion update vector field
is derived from these phase volumes. At each voxel in the
image, the update vector is computed by

δv(x) =
v0(x)

α1(x) + α2(x)/K
, (2)

Note that K is the normalization factor. v0(x), α1(x), and
α2(x) are defined by

v0(x) = W (Φx(x)−Θx(x))(∇∗Φx(x) +∇∗Θx(x))

+W (Φy(x)−Θy(x))(∇∗Φy(x) +∇∗Θy(x))

+W (Φz(x)−Θz(x))(∇∗Φz(x) +∇∗Θz(x)) ,

α1(x) = ||∇∗Φx(x) +∇∗Θx(x)||2 + ||∇∗Φy(x) +∇∗Θy(x)||2

+ ||∇∗Φz(x) +∇∗Θz(x)||2 ,
α2(x) = W (Φx(x)−Θx(x))2 +W (Φy(x)−Θy(x))2

+W (Φz(x)−Θz(x))2.
(3)

Wrapping of phase W (θ) is defined by

W (θ) = mod(θ + π, 2π)− π (4)

and the “starred” gradient is defined by

∇∗Φ(x) :=

{
∇Φ(x), if |∇Φ(x)| ≤ |∇W (Φ(x) + π)|
∇W (Φ(x) + π), otherwise.

(5)
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After all iterations are complete, the forward and inverse
deformation fields can be found by

ϕ(x) = exp(v(x)) and ϕ−1(x) = exp(−v(x)), (6)

and they are both incompressible and diffeomorphic, making
both Eulerian and Lagrangian computations available for the
following continuum mechanics operations.

C. Extraction of Motion Quantities

The first step in our algorithm is to extract the motion
features from PVIRA that characterize the cohesive motion
patterns over time. We extract motion features including the
magnitude and angle of the track similar to [34] described as

mp
f =

√
(xpf+1 − x

p
f )2 + (ypf+1 − y

p
f )2 + (zpf+1 − z

p
f )2 (7)

czpf =
xpf+1 − x

p
f√

(xpf+1 − x
p
f )2 + (ypf+1 − y

p
f )2

+ 1 (8)

cxpf =
ypf+1 − y

p
f√

(ypf+1 − y
p
f )2 + (zpf+1 − z

p
f )2

+ 1 (9)

cypf =
zpf+1 − z

p
f√

(zpf+1 − z
p
f )2 + (xpf+1 − x

p
f )2

+ 1 (10)

where mp
f denotes the magnitude of the track and czpf , cxpf ,

and cypf represent the cosine of the angle projected in the z,
x, and y axes plus one, respectively, which are in the range
of 0 to 2 to satisfy the non-negative constraint in the NMF
formulation. We then rescale all features into the range of 0
to 10 for each feature to be comparable.

For clustering, we gather all the motion features into a 5(F−
1)×P non-negative matrix U = [u1, ...,un] ∈ Rm×n

+ , where
the p-th column can be expressed as

up = [mp
1, · · · ,m

p
F−1, cz

p
1 , · · · , cz

p
F−1, cx

p
1, · · · ,

cxpF−1, cy
p
1 , · · · , cy

p
F−1, ]

T .

These features are always non-negative and can therefore be
input to NMF.

Algorithm 1: Determination of the functional units
1. Extract motion features from displacement fields and
construct U.

2. Apply graph-regularized sparse NMF to U to obtain
V and W.

3. Compute affinity matrix A from W.
4. Apply spectral clustering to A and identify functional
units.

D. Graph-regularized Sparse NMF

1) NMF: Given a non-negative data matrix U constructed
from the motion quantities above and k ≤ min(m,n), let V =
[vik] ∈ Rm×k

+ be the building blocks and let W = [wkj ] ∈
Rk×n

+ be the weighting map. The goal of NMF is to learn
building blocks and corresponding weights such that the input
U is approximated by a product of two non-negative matrices
(i.e., U ≈ VW). A typical way to define NMF is to use
the Frobenius norm to measure the difference between U and
VW [1] given by

E(V,W) = ‖U−VW‖2F =
∑
i,j

(
uij −

K∑
k=1

vikwkj

)2

(11)
where ‖·‖F denotes the matrix Frobenius norm. The solution
can be found through the multiplicative update rule [1]:

V← V. ∗UWT ./VWWT (12)

W←W. ∗VTU./V
T
VW (13)

2) Sparsity Constraint: In this work, since we aim to iden-
tify the simplest muscle coordinations given many different
combinations based on the current wisdom on phonological
theories [18], we impose a sparsity constraint on the weighting
map W. The sparsity constraint allows us to encode the high-
dimensional tongue motion data using a small number of active
components, thereby making the weighting map simple and
easy to interpret. In particular, the weighting map obtained
this way will represent optimized tongue behavior that could
generate the observed motion. In the NMF framework, it has
been reported that a fractional regularizer using the L1/2 norm
outperformed the L1 norm regularizer and gave sparser solu-
tions [38]. Thus, we incorporate the L1/2 sparsity constraint
into the NMF framework, which can be expressed as

E(V,W) =
1

2
‖U−VW‖2F + η ‖W‖1/2, (14)

where the parameter η > 0 controls the sparseness of W and
‖W‖1/2 is defined as

‖W‖1/2 =

 k∑
i=1

n∑
j=1

w
1/2
ij

2

. (15)

3) Manifold Regularization: Despite the high-dimensional
configuration space of human motions, many human motions
lie on low-dimensional manifolds that are non-Euclidean [37].
NMF with the L1/2 norm sparsity constraint, however, pro-
duces a weighting map based on a Euclidean structure in
the high-dimensional data space. Thus, the intrinsic and geo-
metric relation between motion features may not be reflected
accurately. To address this, we incorporate a manifold reg-
ularization that respects the intrinsic geometric structure as
in [23], [39], [40]. The manifold regularization favors the local
geometric structure while serving as a smoothness operator by
reducing the interference of noise. Our final objective function
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incorporating both the manifold regularization and the sparsity
constraint is then given by

E(V,W) =
1

2
‖U−VW‖2F +

1

2
λTr(WLWT ) + η ‖W‖1/2

(16)
where λ is a balancing parameter of the manifold regulariza-
tion, Tr(·) denotes the trace of a matrix, Q is a heat kernel
weighting, D is a diagonal matrix where Djj =

∑
l

Qjl, and

L = D−Q, which is the graph Laplacian.
4) Minimization: The objective function in Eq. (16) is not

convex in both V and W and therefore we use a multiplicative
iterative method akin to that used in [40]. Let Ψ = [ψmk] and
Φ = [φkn] be Lagrange multipliers subject to vmk ≥ 0 and
wkn ≥ 0, respectively. By using the definition of the Frobenius
norm, ‖U‖F = (Tr(UTU))1/2, and matrix calculus, the
Lagrangian L is expressed as

L =
1

2
Tr(UUT )− Tr(UWTVT ) +

1

2
Tr(VWWTVT )

+
λ

2
Tr(WLWT ) + Tr(ΨVT ) + Tr(ΦWT ) + η ‖W‖1/2 .

(17)
The partial derivatives of L with respect to V and W are
given by

∂L
∂V

= −UWT + VWWT + Ψ

∂L
∂W

= −VTU + VTVW + λWL +
η

2
W−1/2 + Φ.

(18)

Finally, the update rule is found by using Karush-Kuhn-Tucker
conditions—i.e., ΨmkVmk = 0 and ΦknWkn = 0:

V← V. ∗UWT ./VWWT

W←W. ∗ (VTU + λWQ)./(VTVW +
η

2
W−1/2

+λWD).

(19)

E. Spectral Clustering

The non-negative weighting map that is simple and sparse
obtained in Eq. (19) provides a good measure of regional tissue
point similarity. To obtain the final clustering results from the
weighting map, spectral clustering is used to determine the
cohesive motion patterns as spectral clustering outperforms
traditional clustering algorithms such as the K-means algo-
rithm [41].

Once W is determined from Eq. (19), an affinity matrix A
is first constructed:

A(i, j) = exp

(
−
‖w(i)− w(j)‖2

σ

)
, (20)

where w(i) is the i-th column vector of W and σ denotes the
scale (we set σ = 0.01 in this work). The column vectors of
W form nodes in the graph, and the similarity A computed
between column vectors of W form the edge weights. On the
affinity matrix, we apply a spectral clustering technique using
a normalized cut algorithm [42]. From a graph cut perspective,
our method can be seen as identifying subgraphs representing
motions that exhibit distinct characteristics.

F. Model Selection

To achieve the best clustering quality, we need to determine
the optimal number k of clusters, which is a challenging
task [45]. In this work, we use a consensus matrix whose
entries indicate probabilities that samples i and j belong to
the same cluster by repeating NMF 10 times. To compute the
dispersion coefficient of a consensus matrix C, the dispersion
coefficient ρ is defined as

ρ =
1

n2

m∑
i=1

n∑
j=1

4(c̃ij − 0.5)
2
, (21)

where c̃ij , m, and n denote each entry of the matrix, the row
and column size of the matrix, respectively. In the ideal case,
for a consensus matrix whose entries are all 0s or 1s, we have
ρ = 1; for a scattered consensus matrix, we have 0 < ρ < 1.
The optimal number of clusters is determined as the one with
the maximal ρk [46]. We set 2 ≤ k ≤ 6 in this work.

IV. EXPERIMENTAL RESULTS

We describe the qualitative and quantitative evaluation to
validate the proposed approach. We both show synthetic and
real in vivo data to demonstrate the accuracy of our approach.

A. Experiments Using 2D Data

We first used two 2D datasets to demonstrate the clustering
performance of the proposed method. The first dataset is the
COIL20 image library, which contains 20 classes (32×32
gray scale images of 20 objects). The second dataset is the
CMU PIE face database, which has 68 classes (32×32 gray
scale face images of 68 persons). In order to compare the
performance of the different algorithms, we used a K-means
clustering method (K-means), a normalized cut method (N-
Cut) [42], standard NMF with K-means clustering (NMF-K),
graph-regularized NMF with K-means clustering (G-NMF-
K) [23], graph-regularized NMF with spectral clustering (G-
NMF-S), graph-regularized sparse NMF with K-means cluster-
ing (GS-NMF-K), and our method (GS-NMF-S). Two metrics,
the Normalized Mutual Information (NMI) and the accuracy
(AC), were used to measure the clustering performance as used
in [23]. Table 1 lists the NMI and AC values, demonstrating
that the proposed method outperformed other methods. We
also compared the L1/2 and L1 norms experimentally, and
the L1/2 norm had slightly better results.

B. Experiments Using Synthetic Tongue Motion Data

Since there is no ground truth in our in vivo tongue motion
data, we evaluated the performance of the proposed method
using four synthetic tongue motion datasets using a composite
Lagrangian displacement field of individual muscle groups
based on a tongue atlas [11]. Each muscle group was defined
by a mask volume with a value of 1 inside the muscle
group, and zero elsewhere. Since the masks were known, it
also provided ground truth labels to assess the accuracy of
the output of the clustering method. The first and second
datasets used genioglossus (GG) and superior longitudinal
(SL) muscles with and without interdigitated regions. The GG
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TABLE I
CLUSTERING PERFORMANCE: NMI AND AC

NMI (%) K-means N-Cut NMF-K G-NMF-K GS-NMF-K G-NMF-S Our method
COIL20 (K=20) 73.80% 76.56% 74.36% 87.59% 90.11% 90.24% 90.63%

PIE (K=68) 54.40% 77.13% 69.82% 89.93% 89.95% 90.95% 91.74%
AC (%) K-means N-Cut NMF-K G-NMF-K GS-NMF-K G-NMF-S Ours

COIL20 (K=20) 60.48% 66.52% 66.73% 72.22% 83.75% 84.58% 85.00%
PIE (K=68) 23.91% 65.91% 66.21% 79.3% 79.93% 80.60% 84.31%

Fig. 2. Illustration of synthetic tongue motion simulation results: (a) trans-
lation plus rotation without interdigitated regions (2 clusters), (b) rotations
with interdigitated regions (3 clusters), (c) translation plus rotation without
interdigitated regions (2 clusters), and (d) rotations with interdigitated regions
(3 clusters). It is noted that our approach identified each label accurately as
visually assessed.

muscle was translated while the SL muscle was rotated −0.1
radians about the x direction in Fig. 2(a) in the course of
11 time frames. The GG muscle was rotated −0.1 radians
about the x direction while the SL muscle was rotated 0.1
radians about the x direction in Fig. 2(b) in the course of 11
time frames. The third and fourth datasets were generated by
applying the same composite Lagrangian displacement field to
the GG and transverse muscles with and without interdigitated
regions as in Fig. 2(c) and (d), respectively. Fig. 2 showed
the final clustering results using our method. We attempted to
cluster each dataset into two (first and third datasets) and three
(second and fourth datasets) distinct motions, respectively,
where we obtained 100% clustering accuracy for all datasets
when evaluated against the ground truth labels.

C. Experiments Using In Vivo Tongue Motion Data

TABLE II
CHARACTERISTICS OF in vivo TONGUE MOTION DATA

Task Protrusion /s/-/u/ /i/-/s/
Time frames 1-13 10-17 15-22

Number of clusters 2-4 2-4 2-4

We also tested our method using a simple non-speech
protrusion task and speech tasks: “a souk” and “a geese”.

Ten subjects performed “a souk” and “a geese” tasks and one
subject performed the protrusion task. We used the features
including the magnitude and angle of each track as our input
to the NMF framework. Table II lists the characteristics of our
in vivo tongue motion data including time frames analyzed and
the number of clusters based on the dispersion coefficient.

First, the functional units have been extracted using our
method for two clusters (Fig. 3(b)), three clusters (Fig. 3(c)),
and four clusters (Fig. 3(d)), respectively, based on the dis-
persion coefficient as in Fig. 4 and visual assessment. The
outer tongue layer expands forward and upward (but not
backward), and the region near the jaw has little motion as
shown in Fig. 3(a). Fig. 3(b) is a good representation of
forward protrusion (red) vs. small motion (blue). In addition,
as the number of clusters increases as shown in Fig. 3(c)
and (d), subdivision of large regions in small motion (blue,
Fig. 3(b)) into small functional units was observed.

Second, the functional units during /s/ to /u/ from “a
souk” were determined using our method for two clus-
ters (Fig. 5(b)), three clusters (Fig. 5(c)), and four clusters
(Fig. 5(d)), respectively, based on the dispersion coefficient
shown in Fig. 6 and visual assessment. These motions are
characterized by forward to upward/backward motion of the
tongue tip, upward motion of the tongue body, and forward
motion of the posterior tongue as in Fig. 5(a). Fig. 5(b) shows
two clusters including the tip plus bottom of the tongue (red)
versus the tongue body. Three clusters as in Fig. 5(c) show
a good representation of the tip, body and posterior of the
tongue and four clusters as in Fig. 5(d) further subdivided the
tongue tip and bottom.

Third, the functional units during /i/ to /s/ from “a geese”
were determined using our method for two clusters (Fig. 7(b)),
three clusters (Fig. 7(c)), and four clusters (Fig. 7(d)), respec-
tively, based on the dispersion coefficient shown in Fig. 8
and visual assessment. These motions are characterized by an
upward motion of the tongue tip, upward/backward motion of
the tongue body, and forward motion of the posterior tongue
as in Fig. 7(a). Two clusters as in Fig. 7(b) show a division
between the tip plus bottom of the tongue (red) and the tongue
body. Three clusters as in Fig. 7(c) are a good representation
of the tip, body and posterior of the tongue and four clusters
as in Fig. 7(d) subdivided the posterior of the tongue further.

V. DISCUSSION

In this work, we proposed a novel approach to character-
izing multiple functional degrees of freedom of the tongue,
which is critical to understand the tongue’s role in speech
and other lingual behaviors. This is because the functioning
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Fig. 3. Illustration of functional units during the tongue protrusion task, showing (a) 3D Lagrangian displacement field, (b) functional units (2 clusters), (c)
functional units (3 clusters), and (d) functional units (4 clusters). It is noted that the colored clustering results are plotted in the tongue shape of the first time
frame showing the neutral tongue position.

Fig. 4. Plot of the dispersion coefficient versus the different number of clusters
for the tongue protrusion task.

of the tongue in speech or other lingual behaviors entails
successful orchestration of the complex system of 3D tongue
muscular structures over time. Determining functional units
from healthy controls plays an important role in understanding
motor control strategy, which in turn could elucidate adapted
motor control strategy when analyzing patient data such as
tongue cancer patients. It has been a long-sought problem that
many researchers attempted using various techniques.

Inspired by recent advances in MR motion tracking and data
mining schemes including sparse NMF and manifold learn-
ing, we presented a novel method for determining functional
units from tMRI, which opens new vistas to study speech
production. Unsupervised data clustering using NMF is the
task of identifying semantically meaningful clusters using a
low-dimensional representation from a dataset. Unlike previ-
ous algorithms, this proposed work aimed at identifying the
internal, coherent manifold structure of high-dimensional 4D
motion data. Two constraints in addition to the standard NMF
were employed to reflect the physiological properties of 4D
tongue motion during speech. Firstly, the sparsity constraint
was introduced to capture the simplest and the most optimized
weighting map. Sparsity has been one of important properties
for phonological theories [18], and our work attempted to
decode this phenomenon within a sparse NMF framework.
Secondly, the manifold regularization was added to capture the
intrinsic and geometric relationship between motion features.
It also allows preserving the geometric structure between

motion features, which is particularly important when deal-
ing with tongue motions that lie on low-dimensional non-
Euclidean manifolds. Our method performed better than K-
means, N-Cut, NMF-K, G-NMF-K, GS-NMF-K, and G-NMF-
S using 2D data.

As for the input features in our framework, we used instan-
taneous velocity information derived from the point tracks.
More features could be investigated such as those reflect
mechanical properties including principal strains, curvature,
minimum-jerk, two-thirds power law, and isochrony [48] or
motion descriptors combining those individual features.

The selection of the number of clusters is often performed
manually as there is no definite model selection method
available. In this work, we built a “consensus matrix” from
multiple runs for each k and assessed the presence of block
structure. As an alternative, one can compare reconstruction
errors for different number k or examine the stability (i.e.,
agreement between results) from multiple randomly initialized
runs for each k. Since there is no ground truth in our tongue
data, we have used both visual assessment and the model
selection approach in which the model selection approach
provided an upper limit of the number of clusters.

There are a few directions to improve the current work.
First, we used a data-driven approach to determine the func-
tional units, which was visually assessed due to the lack of
ground truth. This could be improved by further studies using
model-based approaches via biomechanical stimulations [43]
or electromyography [44] to co-validate our findings. For
biomechanical simulations, subject-specific anatomy and the
associated weighting map could be input and inverse simu-
lation can then be used to verify the validity of the obtained
weighting map. Second, we used magnitude and angle of each
track as our input features. In order to equal the weight of each
input feature, we normalized the feature values in the same
range. In our future work, we will further study automatic rele-
vance determination methods to model the interactions among
these features to yield the best clustering outcome. Finally,
the identified functional units as shown in our experimental
results may involve multiple regions that correspond to sub-
muscles or multiple muscles. Therefore, we will further study
the identified functional units in the context of the muscular
anatomy from individual high-resolution MRI, diffusion MRI,
or a high-resolution atlas [11].
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Fig. 5. Illustration of functional units during /s/ to /u/ from “a souk” showing (a) 3D Lagrangian displacement field, (b) functional units (2 clusters), (c)
functional units (3 clusters), and (d) functional units (4 clusters). It is noted that the colored clustering results are plotted in the tongue shape of the first time
frame showing the neutral tongue position.
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Fig. 6. Plot of the dispersion coefficient versus the different number of clusters
for the task of /s/ to /u/ from “a souk”.

VI. CONCLUSION

We have presented a new algorithm to determine local
functional units that link muscle activity to surface tongue ge-
ometry during non-speech and speech tasks. Our work applied
a graph-regularized sparse NMF method that incorporates joint
sparse and manifold regularizations to the motion tracking
data from tMRI. Both synthetic and in vivo tongue data
were used to verify the performance of the proposed method,
demonstrating that the proposed method was able to accurately
cluster the tongue motion. Our results suggest that it is feasible
to identify the functional units using a set of motion features
including magnitude and angle of each track, and this proposed
method has great potential in the improvement of diagnosis,
treatment, and rehabilitation in patients with speech-related
disorders.
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