Noma (cancrum oris)

Cyril O Enwonwu, William A Falkler Jr, Reshma S Phillips

Noma is an opportunistic infection promoted by extreme poverty. It evolves rapidly from a gingival inflammation to grotesque orofacial gangrene. It occurs worldwide, but is most common in sub-Saharan Africa. The peak incidence of acute noma is at ages 1–4 years, coinciding with the period of linear growth retardation in deprived children. Noma is a scourge in communities with poor environmental sanitation. It results from complex interactions between malnutrition, infections, and compromised immunity. Diseases that commonly precede noma include measles, malaria, severe diarrhoea, and necrotising ulcerative gingivitis. The acute stage responds readily to antibiotic treatment. The sequelae after healing include variable functional and aesthetic impairments, which require reconstructive surgery. Noma can be prevented through promotion of national awareness of the disease, poverty reduction, improved nutrition, promotion of exclusive breastfeeding in the first 3–6 months of life, optimum prenatal care, and timely immunisations against the common childhood diseases.

The WHO International Statistical Classification of Diseases, code A69.0 lists necrotising ulcerative stomatitis, which includes noma, cancrum oris, and fusospirochaetal gangrene. Noma is derived from the Greek $vo\mu\eta$, which means to graze or to devour.¹² Orofacial noma is an infectious disease that starts as gingival ulceration and spreads rapidly through the orofacial tissues, establishing itself with a well-demarcated perimeter surrounding a blackened necrotic centre (figure 1).^{13,4} The gangrene can involve not only the mandible and maxilla but also the nose and infraorbital margins (figure 2). Unlike other

Figure 1: A 3-year-old malnourished girl with acute orofacial noma before removal of the tissue slough

The lesion has a well-demarcated perimeter surrounding a blackened necrotic center. Courtesy Noma Children Hospital, Sokoto, Nigeria.

infectious processes of the face, which mostly expand along cellular spaces of the head and neck, the noma lesion spreads through anatomical barriers such as muscles.5 Names for the disease include cam-tan-ma (oral inflammation like a galloping horse) in Vietnam² and ciwon iska (the wind disease), which metaphorically underscores its rapid development, among the Hausa tribe in Nigeria. In 1848, Tourdes6 described orofacial noma as a "gangrenous affection of the mouth, especially attacking children in whom the constitution is altered by bad hygiene and serious illness, especially from the eruptive fevers, beginning as an ulcer of the mucous membrane with oedema of the face, extending from within out, rapidly destroying the soft parts and the bone, and almost always quickly fatal". This description is still accurate, except for the reduction in mortality rate with prompt treatment.^{1,7-9}

Acute **[A: OK?]** noma is seen predominantly in children aged 1–4 years, although late stages can occur in adolescents and adults.^{1,1,0,11} The WHO designates noma a health priority.¹² There have been several recent reviews on noma,^{2,13-16} and some^{2,14} provide detailed information on the history of the disease dating back to classical and medieval civilisations in Europe. Surgical repair procedures for the sequelae of noma have also been reviewed lately.^{2,14,17} This Seminar therefore focuses primarily on acute noma.

Search strategy and selection criteria

We did a comprehensive search of scientific publications including databases OLD MEDLINE via OVID (1951–65), MEDLINE via PubMed (1950–2005), and ISI web of science. The search terms used were "noma", "cancrum oris", "oral gangrene", "orofacial necrosis", "necrotiz[s]ing ulcerative gingivitis", and "noma, malnutrition AND oral health", "noma AND measles", "noma AND viral infections", and "noma AND HIV/AIDS". Many published reports on noma were also identified through searches of COE's extensive records collected over the past four decades. The historical references were limited to those retrievable by a MEDLINE search, with noma, cancrum oris, or both as the key words. Reviews by Tempest¹ and Marck² were guides to historical descriptions of noma in earlier centuries. Only reports published in English, French, or German were reviewed.

Lancet 2006; 367: pg–pg

Department of Biomedical Sciences, School of Dentistry (Prof C O Enwonwu ScD, W A Falkler Jr PhD, R S Phillips PhD), and Department of Biochemistry and Molecular Biology, School of Medicine (Prof C O Enwonwu), University of Maryland, Baltimore, MD, USA [A: we give only one degree per author; are those selected OK? Are any of the other authors full prfoessors?]

Correspondence to: Prof Cyril O Enwonwu, Department of Biomedical Sciences, University of Maryland, 666 West Baltimore Street, Baltimore, MD 21201, USA cenwonwu@umaryland.edu

Figure 2: A malnourished boy aged 2·2 years with a noma lesion involving the orofacial tissues, lips, and nose, and extending to the infraorbital margin

Global burden of noma

Nomawas not always restricted to tropical or African countries.²¹⁰ It was common in Europe until the end of the 19th century.¹² Noma disappeared from more developed countries in the 20th century, except for cases reported in the concentration camps of Bergen-Belsen and Auschwitz^{18,19} and, more recently, in association with intense immunosuppressive therapy²⁰ in patients with HIV infection or AIDS,^{8,9} as well as in native American

children with severe combined immunodeficiency syndrome.²¹ The disease almost disappeared in more developed countries with improvements in the standard of living, even before the discovery of penicillin.^{2,3,13} By contrast, noma has remained an important health problem of deprived children in sub-Saharan Africa.^{10,22,23} Most of the cases in Africa occur in a belt stretching across western and central Africa towards Sudan.^{10,12,14} Several countries in this hot, arid zone are characterised by mass poverty and frequent famines. In Nigeria^{1,3,24} and Senegal,23 for example, a few specific regions account for most of the cases of noma in those countries. WHO has prepared a global map of reported cases during the period before 1980 and up to 2000 (figure 3), showing that although most of the countries affected are in Africa, Asia and Latin America are also involved.2,10

There is a severe lack of global data on acute noma in children. The major obstacles have been extensively documented.^{10,13,23} In 1998, WHO estimated that worldwide 140 000 children contract noma each year, and 79% of them die from the disease and associated complications.²⁵ In 2003, Fieger and colleagues²⁶ estimated an annual incidence of 6·4 cases per 1000 children in north-west Nigeria and, by extrapolation, an incidence of 25 600 for the countries bordering the Sahara. In specific African countries such as Senegal,²³ Gambia,²⁷ and Niger,¹⁰ the annual incidences derived from hospital records are 0·28–0·84, 1·9, and 0·7–1·4 per 1000 children, respectively. These rates

Figure 3: Worldwide distribution of reported cases of noma

Adapted from WHO. Before 1980, many less developed countries, particularly in sub-Saharan Africa, had poor noma reporting systems. Since the 1990s, awareness of noma has increased in these countries, and some have established control plans.

represent the tip of the iceberg, because no more than 10% of affected children seek medical care during the acute stage. $^{7.16}$

Over the years, acute noma was known as a disease of deprived children [A: since we explain in the next sentence that the disease has now appeared in HIVpositive children, we think the part of the sentence about non-immunocompromised was superfluous and potentially confusing.].^{13,11,24} More recently, there have been sporadic reports of acute noma-like disease occurring in HIV-positive individuals.^{8,9,28,29} Between 1989 and 1993, the HIV status of 26 of the 45 children younger than 3 years admitted to the University of Zambia Hospital for treatment of noma was ascertained; nine (35% [A: we round percentages up or down if the denominator is less than 100 and especially when talking about people]) were seropositive.9 Noma is not listed among the clinical syndromes associated with HIV/AIDS in children.^{30,31} Costini and colleagues³² expressed concern that the AIDS epidemic could increase the number of noma cases. There are large subregional differences in the prevalence of HIV infection in sub-Saharan Africa; southern and eastern Africa have much higher rates than western Africa.33 Nonetheless, the reported incidence of noma is higher in western Africa.^{2,4,34,35}

Clinical presentation, progression, and sequelae

Many patients with acute noma present with a range of features reflecting pre-existing, debilitating health conditions. Thev include fever (temperature 38.3-40.5°C), tachycardia, high respiratory rate, and anorexia. The medical history generally shows recurrent fevers, diarrhoea, infections with parasites (eg, malaria) and viruses (eg, measles, herpes) in the recent past.^{1,2,3,5} Severe anaemia, with haemoglobin concentrations as low as 50-60 g/L, white-blood-cell counts of 20-30×109 per L [A: we give cell counts per litre; please check conversions], and hypoalbuminaemia are common.^{3,24,36,37} Serum concentrations of antioxidant micronutrients are very low, consistent with severe malnutrition and presence of infections.^{3,37} Studies in Nigeria have shown that serum concentrations of the proinflammatory and antiinflammatory cytokines are higher in children with acute noma than in healthy urban children of similar age, but there is less difference between affected children and their malnourished neighbourhood counterparts without noma.37 The most prominent feature of children with acute noma is growth retardation (table 1), and many are severely or critically affected.11,38

Orofacial features

The orofacial lesion can occur unilaterally or bilaterally, but it is unilateral in many cases. Descriptions of the initial stages are inconsistent because the disease is generally well established before the victim seeks medical help.^{12,16} The early features include soreness of the mouth, pronounced halitosis, foetid taste, tenderness of the lip

	Neighbourhood village children (n=55)	Noma group (n=58)	р
Mean (SD) age, years	2.40 (1.28)	2.58 (1.02)	
Height for age Z score			
Mean (SD)	-1-43 (2-22)	-3.82 (2.16)	<0.001
Number (%) −2·0 SD or more	20 (37%)	53 (91%)	<0.001
Number (%) −3·0 SD or more	7 (13%)	41 (70%)	<0.001
Number (%) –4·0 SD or more	4 (8%)	25 (43%)	<0.001
Weight for age Z score			
Mean (SD)	-1.87 (1.67)	-3.65 (1.82)	<0.001
Number (%) −2·0 SD or more	26 (47%)	51 (88%)	<0.001
Number (%) −3·0 SD or more	12 (21%)	47 (81%)	<0.005
Number (%) −4·0 SD or more	5 (10%)	27 (47%)	<0.02

Adapted from Enwonwu and colleagues¹¹ with permission. The neighbourhood village children without noma include siblings of those with noma.

Table 1: Anthropometric data for Nigerian children [A: we prefer to give exact p values rather than <0??; please can you give these? Also, we like to give actual numbers with percentages; please check.]

Figure 4: A 2-year-old deprived girl of 5 kg in weight and 73 cm in height The child presented with facial swelling, anaemia, angular cheilosis, skin lesions particularly around the nose, and prominent malodorous breath. Intraoral examination revealed necrotising ulcerative gingivitis involving the posterior right quadrant of the maxilla

or cheek, cervical lymphadenopathy, a foul-smelling purulent oral discharge, and a blue-black discoloration of the skin in the affected area.^{1,3,5,7} The face on the affected side is swollen in most cases (figure 4). There is general consensus that noma starts as gingivitis, most commonly in the premolar to molar and mandibular incisor regions, extends to the labiogingival fold and on to the mucosal surface of the cheek and lip.^{1,3,14,23} Necrotising ulcerative gingivitis, a painful inflammation of the marginal interdental papillae, has long been thought to be the precursor of noma,^{3,39–41} but this view is now disputed.^{4,22,28} This disorder predominantly affects deprived African children, and has a peak age incidence corresponding to that of acute noma.^{3,41,42} Emslie⁴⁰ stated that noma is an extension of necrotising ulcerative gingivitis; to

Figure 5: A Nigerian child with necrotising ulcerative gingivitis involving the maxillary right quadrant with simultaneous ulceration of the adjacent cheek Reprinted with permission from Enwonwu.³

Figure 6: Small orofacial noma destruction involving the mandible in a malnourished child aged 2-5 years Courtesy Noma Children Hospital, Sokoto, Nigeria.

Figure 7: A 2-year-old child after removal of tissue slough and bone sequestration, showing extensive intraoral destruction

differentiate between the two, he chose alveolar bone exposure as the transition point, a view shared by others.43,44 However, infection with the measles virus1,3,36 and other viruses might initiate noma.8,45 Postmeasles necrotic lesions of the mouth occur in malnourished children.^{36,39,46} When the inflammation simultaneously involves the gingivae and the mucosal surface of the adjacent cheek (figure 5), further progression leading to perforation of the cheek is rapid, in a matter of days in many cases.^{1,3,5,7} Generally, the external tissue loss is not closely related to the more extensive intraoral destruction.7.9 Sequestration of the exposed bone and teeth occurs spontaneously after separation of the softtissue slough. In some cases, debridement of the wound is necessary to prevent secondary infection and promote the healing process.9 The loss of orofacial tissues is diverse, varying from a small area (figure 6) to more extensive destruction (figure 7) of the nose, upper lip, and premaxilla, and the infraorbital margin.^{2,9}

The sequelae of acute noma depend largely on the sites affected, the extent and severity of tissue destruction, and the stage of development of the orofacial complex before the onset.¹⁷ They can include displacement of the teeth, disfiguring, intense scarring, bony fusion between the maxilla and mandible, trismus, defective speech, and nasal regurgitation if the maxilla is lost. Thus, survivors of the acute phase have the two-fold problems of disfigurement and functional impairment, as well as the attendant psychological trauma. Details of these and their surgical management are described elsewhere.^{2,14,17}

Differential diagnosis of noma

The disorder known as noma neonatorum affects newborn and preterm infants and clinically resembles noma in children.^{47–49} The necrotic lesion, generally in the oronasal region, develops during the first month of life; in most cases, there is evidence of infection with Pseudomonas aeruginosa, Escherichia coli, klebsiella, or staphylococci.^{47,48} Except for one case in a preterm baby in the USA,50 virtually all the reported cases hav been in infants born in India, China, Lebanon, or Israel.51-53 Preterm birth and severe intrauterine growth retardation (IUGR) are important predisposing factors.48 Other ulcerative lesions to be considered in the differential diagnosis of noma include leishmaniasis, agranulocytic angina, malignant oral lesions, midline granuloma of the face, and syphilis, but most of these are rare in children aged 2-5 years.1 Skin lesions associated with ecthyma gangrenosum occur predominantly in the perineal area and the limbs, with rare facial involvement.⁵⁴ Extensive and disfiguring destruction of the mucous membranes of the nose, mouth, and throat can occur in mucocutaneous leishmaniasis, but 90% of cases occur in Bolivia, Brazil, and Peru.⁶⁴ [A: reference numbering goes from 54 to 64; please indicate where references 55 to 63 should be cited. Some of them are cited later, but the order is incorrect if those are the first citations.] Buruli ulcer resulting from infection with *Mycobacterium ulcerans*, preferentially affects the limbs, particularly the legs.⁶⁵ Necrotising diseases of the periodontium associated with HIV infection⁶⁶ can resemble the early intraoral signs of noma. Serological testing for HIV infection should be done in these patients. In the diagnosis of the early stages of noma, history of a recent exanthematous fever or debilitating disease, oral mucosal ulcer with bone exposure, excessive salivation, malodorous breath, and severe stunting or wasting in a deprived child are important warning signs. Diagnosis of a well-established case of noma in children is not difficult.¹³

Microbiology

The earliest bacteriological studies of noma were described by Weaver and Tunnicliff in 1907.⁵⁷ An important major microscopic observation is the presence of large numbers of fusiform bacilli and spirochaetes.^{116,57} Hicken and Eldredge⁵⁸ suggested that a symbiotic association of fusiform bacilli with a non-haemolytic streptococcus and *Staphylococcus aureus* was needed to produce noma. Emslie⁴⁰ observed that these organisms were predominant in smears from patients with acute noma but also reported presence of other organisms. Macdonald⁵⁹ studied cultures from patients with noma in Nigeria and reported that *Bacteroides melaninogenicus* might be an important associated microorganism in mixed infections of mucous membranes.

Early studies of necrotising ulcerative gingivitis, a putative precursor of noma,^{3,40,41} incriminated spirochaetes, fusiform bacteria and Prevotella intermedia as potential causative agents.^{60,61} Some reports have associated necrotising ulcerative gingivitis, noma, or both with human cytomegalovirus,⁶² measles virus,³⁴⁰ herpes simplex virus,40,46 and other unspecified viruses. PCR studies of herpesviruses in 22 Nigerian children with necrotising ulcerative gingivitis showed that 15 (68%) had viral infection and eight (36%) had viral coinfection [A: please check calculations of absolute numbers.].⁴⁵ Human cytomegalovirus infection (59%) was the most common. The findings suggested that this virus and possibly other herpesviruses contribute to the onset or progression of necrotising ulcerative gingivitis in malnourished Nigerian children. Microbiological samples from the same children were cultured anaerobically on selective media.63 The predominant were Prevotella bacteria isolated intermedia. Fusobacterium nucleatum, Peptostreptococcus micros, campylobacter, streptococci, and enteric gram-negative rods; these findings did not differ from those in the healthy sites of malnourished children without necrotising ulcerative gingivitis. More anaerobes, particularly Prevotella intermedia, were present in the mouths of the malnourished than of the healthy children. These findings suggested that malnourished children have a different flora from healthy children, as previously

	Isolates/number of patients sampled		
Fusobacterium necrophorum	7/8		
Prevotella intermedia	6/8		
α streptococci	4/8		
Actinomyces spp	3/8		
Peptostreptococcus micros	1/8		
Veillonella parvula	1/8		
Pseudomonas spp	1/8		
Staphylococcus aureus	1/8		
Details of the sampling and culture procedures are given in Falkler and colleagues. $^{\rm gs}$			
<i>Table 2:</i> Microorganisms recovered from noma lesions in Nigerian children			

reported by Sawyer and colleagues.⁶⁴ The presence of similar organisms in malnourished children with or without necrotising ulcerative gingivitis also suggested that some other organisms or factors might lead to the development of noma from this putative precursor lesion.

Table 2 summarises the microorganisms recovered from the active sites of noma lesions in Nigerian children; *Fusobacterium necrophorum* was the most commonly isolated.⁶⁵ [A: no need to repeat data from table; the percentages aren't really necessary with a denominator of 8.] Actinomyces, veillonella, and α -streptococci are normal oral flora. Most of the other microorganisms (staphylococci, pseudomonas) isolated from one or a few cases have previously been associated with noma lesions.⁴⁰ *Prevotella intermedia* is involved in periodontal diseases^{66,67} and has also been identified as a putative pathogen in necrotising ulcerative gingivitis in young adults.⁶¹ This microorganism promotes tissue destruction through its ability to degrade lipids⁶⁶ and the production of proteolytic enzymes.⁶⁸

The association of *F necrophorum* with necrobacilliosis in wallabies,^{22,69} and the similarity of this disease to noma in people resulted in the proposal that the organism is involved in the aetiology of human noma.²² F necrophorum did not seem to be part of the normal flora in malnourished Nigerian children without noma living in agricultural and herding villages.70 In that study,70 F nucleatum was recovered from all 30 children sampled and F necrophorum from only one child. These findings in children at risk of noma suggest that *F necrophorum* is a trigger organism for the disease and that it gains a foothold only when certain staging conditions, such as lowered host resistance or oral lesions, are present.65,70 Although a predominantly animal pathogen, F necrophorum has been isolated from people with Lemierre's syndrome⁷¹ and other infectious diseases.⁷² The infections in animals associated with F necrophorum include liver abscesses and diphtheria in cattle, foot rot in domestic animals, and necrotic lesions in the oral cavity.73 These diseases are typified by necrosis of the tissues involved, abscess formation, and a characteristic putrid odour. The organism is a commensal in the gut of herbivores, and infection arises from faecal contamination of damaged mucous membranes or skin.⁷⁴ Virulence factors of *F necrophorum* have been summarised elsewhere;^{13,65} they include various toxins and a growth-stimulating factor for *Prevotella intermedia*. More studies are needed to identify the role of this microorganism in the causation of noma.

In an attempt to explore the bacterial diversity in noma lesions by culture-independent molecular methods, 16S ribosomal RNA genes of bacteria isolated from advanced noma lesions of four Nigerian children were PCR amplified with universally conserved primers and spirochaetal selective primers and cloned into *Escherichia coli*.⁷⁵ 67 bacterial species or phylotypes were detected, of which 25 have not yet been grown in vitro.⁷⁵ Since advanced noma lesions are infections open to the environment, detection of species not commonly associated with the oral cavity (eg, from the soil) was not surprising.

Risk factors for noma

Noma has not been reported in healthy, privileged African children.^{13,22} Poverty is the key risk factor in Africa^{2,3,22} and elsewhere.43,44 A retrospective study of 173 cases at a hospital in Nigeria showed that 98% were from very poor homes with a mean of seven children per family.76 The global dimensions of poverty and its health implications, particularly malnutrition, are well documented.77 Chronic malnutrition is a major predisposing factor in all countries reporting noma.^{2,3,13,16} The global distribution pattern of the disease¹⁰ reflects the worldwide distribution of malnutrition, particularly deficiencies of vitamin A and other micronutrients in children younger than 5 years.^{10,78} These associations, the occurrence of noma in the wartime concentration camps,18,19 and the absence of cases in well-nourished African children²² strongly support the role of malnutrition in its development. Most of the reported cases of noma in African countries occur during the dry season, when food is scarce^{1,3,39} and the incidence of severe measles is highest.179

Noma is common in environments with unsafe drinking water, scanty sanitation, poor oral health, limited access to good health-care services, close

Panel 1: Recommendations for the management of acute noma

- Correction of dehydration and electrolyte imbalance
- Nutritional rehabilitation
- Treatment of predisposing diseases—eg, malaria, measles, tuberculosis
- Antibiotics (penicillin and metronidazole are generally effective)
- Local wound care (irrigation of the wound with appropriate antiseptic)
- Physiotherapy to reduce fibrous scarring
- Removal of any remaining tissue slough and sequestra; generally, necrotectomy is not done until acute stage is controlled
- Serological test for HIV infection and appropriate referral if positive

proximity to neglected livestock, nomadic lifestyle, and a high prevalence of diseases such as measles, malaria, and diarrhoea.^{11,13,80} The rate of low birthweight in these communities is as high as 20%,⁸¹ and it is attributable mainly to IUGR rather than to prematurity.⁸² Exclusive breastfeeding in the first 3 months of life is rare in communities at risk of noma;⁸³ the reported rate of exclusive breastfeeding in Nigerian villages, for example, varies from less than 2%⁸⁴ to about 12%.⁸⁵ Foods given to infants are of poor quality and are prepared under conditions of poor hygiene. The infant mortality rate is as high as 114 per 1000 live births in some communities.¹¹

Virtually all patients with noma report histories of previous recent debilitating infections, measles and malaria being the most frequent.^{13,36,80} The potential contribution of several viruses, especially in relation to their role in the causation of necrotising ulcerative gingivitis, has been discussed.^{8,28,45} Studies in Nigeria suggest an increasing frequency of necrotising ulcerative gingivitis among poor rural children.^{24,45} During the past two decades, there has also been an increase worldwide in the prevalence of necrotising ulcerative gingivitis associated with HIV/AIDS.^{29,32} Nonetheless, in both HIV-positive and HIV-negative children in Africa, only a small proportion of cases of necrotising ulcerative gingivitis or other oral ulcers evolve into noma.

Interventions

Treatment of acute noma

The key points of management during the acute phase of noma (panel 1) are prompt admission to hospital, correction of dehydration and electrolyte imbalance, nutritional rehabilitation to correct energy deficit and deficiencies of proteins and micronutrients, treatment with antibiotics, daily dressing of the lesion with gauze soaked in oral antiseptic, and treatment of associated systemic diseases.^{2,16,86} Some researchers¹⁶ recommend the use of a broad-spectrum antibiotic, whereas others⁸⁶ believe that metronidazole (20 mg/kg daily) is adequate since noma is associated with predominantly anaerobic microorganisms. Except for control of secondary haemorrhage and removal of any loose teeth, invasive intraoral procedures are contraindicated Oral hygiene measures are indicated when local conditions permit.¹⁶ Patients should rinse their mouths daily with a solution of chlorhexidine digluconate (0.12-0.20%).86 Marck² emphasised that oral feeding, although the best option, may not be possible owing to pain or incipient trismus, thus necessitating enteral nutrition with a tube. Parenteral nutrition is mandatory if the patient is very sick. A highprotein diet, enriched with energy source and essential micronutrients, is recommended. At the Noma Children Hospital, Sokoto, Nigeria, a highly enriched nutrition formula (Enfortal; ????????, Netherlands [A: please give name of manufacturer and the city where it is based]) has given good results.² The patient's weight should be monitored daily.

Physiotherapy should be initiated during the healing phase and continued after surgery to prevent stricture of the mouth resulting from fibrous scarring.⁸⁷ Wooden spatulas can help to keep the mouth open in the absence of qualified physiotherapists, but the Therabite ([A: please give name of manufacturer and the city and country where it is based]) is preferable.⁸⁶

Surgical repair

There have been several reviews on this subject.^{2,9,16} The modalities used depend largely on extent and location of the lesions, available technical facilities, and the competence of the surgical team.⁸⁸ Since the reconstructive surgery is complex in many cases, a careful preoperative classification of the tissue defects based on extent and severity of the lesion is necessary. Several classifications have been reported.^{2,8,89} Various flap techniques, ranging from simple flaps and autoplasty to complex procedures involving microsurgery, have been described for repair.^{1,2,88,89} Even in the most advanced medical environments, the results of surgical repair are less than perfect.⁹⁰ Treated cases must be followed up, therefore, and efforts made to reintegrate them into society.

Prevention and early detection of noma

Noma is encountered mainly in underprivileged, illiterate, remote communities. It becomes established very rapidly, leaving patients little time to seek medical assistance. Parents, and even many health personnel, know little about the disease. Information campaigns are therefore needed at national, regional, and village levels. All health personnel, including physicians and dentists, should routinely screen at-risk children for early signs of noma (panel 2), and suspected cases should be promptly referred to appropriate facilities.^{2,16,22} Training of publichealth personnel on recognition of early lesions is essential. All oral mucosal ulcers in deprived, stunted children should be viewed with suspicion. Factors to prevent noma are listed in panel 3. At the governmental level, eradication of poverty should be a top priority.

Proposed pathogenesis of noma

There is a three-way relation between malnutrition, immune dysfunctions in the host, and increased susceptibility to infections.⁹¹⁻⁹⁵ As shown in figure 8 under the broad umbrella of poverty, this relation tends to be synergistic^{91.94} and results in impaired oral mucosal immunity. In African communities at risk of noma, the adverse consequences of IUGR, which include impaired development of immune function, especially cellmediated immunity,^{96,97} become apparent in early postnatal life, and continue into adulthood in terms of increased risk to disease.^{77,96} Programming of the endocrine axes, which occurs during crucial phases of fetal development, is adversely affected by IUGR.⁹⁸

The coincidence of the peak age incidence of acute noma^{11,42,76} and the timing of linear growth retardation in

Panel 2: Early detection of acute noma

- Routine mouth examination
- Severe growth failure in first 6 months of life
- Evidence of severe malnutrition and poor dietary habits; persistent diarrhoea
- Oral mucosal ulcers (eg, necrotising ulcerative gingivitis, measles, herpes, cytomegalovirus)
- Prominent malodorous breath

Panel 3: Prevention of noma

- Information campaign/national awareness about noma
- Eradication of poverty
- Improved living conditions, with particular attention to environmental sanitation
- Segregation of livestock from human living quarters
- Proper oral-hygiene practices
- Adequate nutrition, with particular emphasis on exclusive breastfeeding in the first 3-6 months of life
- Clean drinking water
- Timely immunisations against common childhood diseases, particularly measles
- Increased awareness of the nutritional and health needs of women, particularly during pregnancy and lactation

impoverished African children^{83,85} may not be fortuitous. Growth faltering in deprived African infants becomes noticeable at age 3-4 months with discontinuation of exclusive breastfeeding^{84,85} and continues until about 36 months.^{85,99} The importance of exclusive breastfeeding in preventing infections of the host via mucosal membranes has been reported.^{100,101} The infancychildhood-puberty model divides human growth into three additive, partly superimposed phases; the infancy phase starts in the middle of gestation and ends at about 3-4 years of life.^{102,103} Malnutrition and a continuous burden of immunostimulation by environmental antigens explain the occurrence of linear growth retardation in deprived children.¹⁰⁴⁻¹⁰⁶ Since stunting in infants is a process that might start in utero,102,107 the contribution of prenatal events to the severe growth failure seen in children with acute noma (table 1) needs to be explored.

Amounts of secretory IgA, a major component of the mucosal immune system,¹⁰⁸ are lower than normal in malnutrition.⁹² Plasma concentrations of C-reactive protein and the proinflammatory cytokines are higher in malnourished African children than in their healthy counterparts; in both groups, infections intensify the high concentrations.¹⁰⁹ As AIDS does,¹¹⁰ the two most commonly reported infections preceding noma, malaria¹¹¹ and measles,^{112,13} promote a shift from a proinflammatory to an anti-inflammatory cytokine profile. Studies of malnourished Nigerian children (younger than 5 years) with acute measles show severe depletion of plasma interleukin 12, an increase in interleukin 6, diminished

Figure 8: Suggested scheme for the pathogenesis of noma in deprived African children Adapted from Enwonwu and colleagues." [A: which reference please; there are two in 1999]

circulating retinol, and increased plasma cortisol compared with measles-free, neighbourhood children of the same age.¹¹² By impairing T-cell function, measles seems to increase further the vulnerability of immunologically compromised malnourished children to infection with the microorganisms that cause noma.^{112,113}

No more than 20% of the variability in inflammatory periodontal disease expression is thought to be attributable to local causative factors, so there must be a substantial contribution from the host's responses.114 The rapid destruction of orofacial tissues in acute noma^{3,5} suggests an immunopathological reaction to microbial factors. Plasma concentrations of proinflammatory and anti-inflammatory/regulatory cytokines are higher in children with necrotising ulcerative gingivitis than in healthy control children.115 In response to bacterial products, oral epithelial cells and other resident cells secrete several proinflammatory cytokines and chemokines.^{116,117} The proinflammatory cytokines stimulate expression of the matrix metalloproteinases118 and also have a role in pathological bone loss.119

Despite the high prevalence of necrotising ulcerative gingivitis and other oral mucosal ulcers^{120,121} in deprived African children, only a small proportion of cases progress to noma. The reason for the transition from these ulcers to noma is not clear (figure 8). While still searching for the missing link, one of us (COE) speculates

that acute noma occurs in a small subset of deprived children whose prenatal development is compromised by maternal malnutrition and infection.^{122,123} According to this hypothesis, because IUGR and exclusive breastfeeding promote normal thymic function, T-cell differentiation, and other features of immune development, $^{\scriptscriptstyle 124,125}$ the vulnerability of such infants to infections becomes even more profound with early discontinuation of exclusive breastfeeding. Unlike preterm low-birthweight infants who recover immunologically much earlier (2-3 months of age), most low-birthweight infants who are small for gestational age show long-lasting impairment of cell-mediated immunity up to age 12 years.^{92,126} Perhaps there is no pathogenetic difference between noma in children and the histopathologically similar noma neonatorum in preterm infants, since the consequences of prenatally impaired immune function can manifest at various postnatal stages of life.77,96,97

Noma robs many children of their future. There is urgent need for countries where noma is still prevalent to set up control plans that emphasise prevention and early detection of the disease, while addressing poverty, environmental hygiene, perinatal health care, maternal and infant nutrition, and timely immunisation of children against endemic diseases, particularly measles.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

Most of the recent studies reported here and carried out in our units/ laboratories, were supported by funds to one of us (COE) by the US Public Health Service [A: correct?] grant DE43TW00907A from the US National Institutes of Health (Fogarty International Center and the National Institute of Dental and Craniofacial Research), and a grant from Nestlé Foundation, Lausanne, Switzerland. Part of the work reported was carried out when one of us (COE) was Chairman of the International Board of Trustees of the Noma Children Hospital, Sokoto, Nigeria, and he thanks the hospital staff, particularly for their help in the photography of noma patients, and the Hospital Director, Hartwig Sauter [A: I can't find a letter from Dr Sauter, stating that he is happy to be acknowledged, in the folder; please could you send this as soon as possible?]. No funding source was involved in the preparation of this seminar [A: rewording correct? This is our standard format].

References

- Tempest MN. Cancrum oris. Br J Surg 1966; 53: 949–69.
 Marck KW. Noma: the face of poverty. Hannover: MIT-Verlag GmbH, 2003: 53–128.
- B Enwonwu CO. Epidemiological and biochemical studies of necrotizing ulcerative gingivitis and noma (cancrum oris) in Nigerian children. Arch Oral Biol 1972; 17: 1357–71.
- 4 Enwonwu CO, Falkler Jr WA, Idigbe EO, Savage KO. Noma (cancrum oris): questions and answers. Oral Dis 1999; 5: 144–49.
- 5 Evrard L, Laroque G, Glineur R, Daelmans P. Noma: clinical and evolutive aspect. Acta Stomatol Belg 1996; 93: 17–20.
- 6 Tourdes J. Du noma ou du sphacele de la bouche chez les enfants. Thesis, Strasbourg, 1848.
- 7 Adolph HP, Yuqueros P, Woods JE. Noma: a review. Ann Plast Surg 1996; 37: 657–68.
- 8 Chidzonga MM. Noma (cancrum oris) in human immunodeficiency virus/acquired immune deficiency syndrome patients. J Oral Maxillofac Surg 1996; 54: 1056–60.
- 9 Nath S, Jovic G. Cancrum oris: management, incidence, and implications of human immunodeficiency virus in Zambia. *Plast Reconstr Surg* 1998; **102**: 350–57.

- 10 Barmes DE, Enwonwu CO, Leclercq M-H, Bourgeois D, Falkler WA. Editorial: the need for action against oro-facial gangrene (noma). *Trop Med Intern Hlth* 1997; 2: 1111–14.
- 11 Enwonwu CO, Phillips RS, Ferrell CD. Temporal relationship between the occurrence of fresh noma and the timing of linear growth retardation in Nigerian children. *Trop Med Intern Health* 2005; **10**: 65–73.
- 12 Bourgeois DM, Leclercq MH. The World Health Organization initiative on noma. *Oral Dis* 1999; 5: 172–74.
- 13 Enwonwu CO, Falkler Jr WA, Idigbe EO. Oro-facial gangrene (noma/cancrum oris): pathogenetic mechanisms. *Crit Rev Oral Biol Med* 2000; 11: 159–71.
- 14 Marck KW. A history of noma, the "face of poverty". *Plast Reconst Surg* 2003; **111**: 1702–07.
- 15 Berthold P. Noma: a forgotten disease. *Dent Clin N Am* 2003; 47: 559–74.
- 16 Baratti-Mayer D, Pittet B, Montandon D, et al. Noma: an "infectious" disease of unknown aetiology. *Lancet Infect Dis* 2003; 3: 419–31.
- 17 Marck KW, de Bruijn HP, Schmid F, Meixner J, van Wijhe M, van Poppelen RHM. Noma: the Sokoto approach. *Eur J Plast Surg* 1998; 21: 277–81.
- 18 Adelsberger L. Medical observations in Auschwitz concentration camp. Lancet 1945; 1: 317–20.
- 19 Dawson J. Cancrum oris. Br Dent J 1945; 79: 151-57.
- 20 Limongelli WA, Clark MS, Williams AC. Noma-like lesion in a patient with chronic lymphocytic leukemia. Oral Surg 1976; 41: 40–51.
- 21 Rotbarth HA, Levin MJ, Jones IF, et al. Noma in children with severe combined-immunodeficiency. *J Pedr* 1986; **109**: 596–600.
- 22 Enwonwu CO. Noma: a neglected scourge of children in sub-Saharan Africa. *Bull World Health Organ* 1995; **73**: 541–45.
- 23 Bourgeois DM, Diallo B, Frieh C, Leclercq MH. Epidemiology of the incidence of oro-facial noma: a study of cases in Dakar, Senegal 1981–1993. Am J Trop Med Hyg 1999; 61: 909–13.
- 24 Enwonwu CO, Falkler WA Jr, Idigbe EO, et al. Pathogenesis of orofacial gangrene (noma): confounding interactions of malnutrition and infection. *Am J Trop Med Hyg* 1999; 60: 223–32.
- 25 World Health Organization. World Health Report, 1998, Geneva: WHO, 1998.
- 26 Fieger A, Marck KW, Buxch R, Schmidt A. An estimation of the incidence of noma in north-west Nigeria. *Trop Med Intern Health* 2003; 8: 402–07.
- 27 Bickler SW, Sanno-Duando B. Epidemiology of paediatric surgical admissions to a government referral hospital in the Gambia. Bull World Health Organ 2000; 78: 1330–36.
- 28 Adedoja D, Kabue MM, Sahila P. Cancrum oris in HIV infected children in Lesotho: report of two cases. *E Afr Med J* 2002; 79: 499–501.
- 29 Chidzonga MM. HIV/AIDS orofacial lesions in 156 Zimbabwean patients at referral oral and maxillofacial surgical clinics. *Oral Dis* 2003; 9: 317–22.
- 30 Vetter KM, Djomand G, Zadi F, et al. Clinical spectrum of human immunodeficiency virus disease in children in a West African city. *Pediatr Infect Dis J* 1996; 15: 438–42.
- 31 Patton LL, Phelan JA, Ramos-Gomez FJ, Nittayanata W, Shiboski CH, Mbuguye TL. Prevalence and classification of HIV-associated oral lesions. Oral Dis 2002; 8 (suppl 2): 98–109.
- 32 Costini B, Larroque G, Duboscq JC, Montandon D. Noma or cancrum oris: etiopathogenic and nosologic aspects. *Med Trop (Mars)* 1995; 55: 263–73.
- 33 [A/E: Reference???]
- 34 Asamoah-Odei E, Calleja JMG, Boerma JT. HIV prevalence and trends in sub-Saharan Africa: no decline and large subregional differences. *Lancet* 2004; 364: 35–40.
- 35 Jelliffe DB. Infectious oral necrosis. *Com Dent Oral Epidemiol* 1985; 13: 342.
- 36 Chindia ML, Guthua SW, Kimaro SS, Moshy J. Gangrenous stomatitis (Cancrum oris): clinical features, etiologic factors, and complications. *Quintessence Int* 1997; 28: 277–81.
- 37 Kozminska-Kubarska A, Talleyrand D, Bakatubia M. Cutaneous complications during measles in Zairian children: noma-like postmeasles ulcerations. *Int J Dermatol* 1982; 21: 465–69.

- 38 Phillips RS, Enwonwu CO, Falkler WA. Pro-versus antiinflammatory cytokine profile in African children with acute orofacial noma (cancrum oris, noma). *Eur Cytokine Netw* 2005; 16: 169–76.
- 39 De Onis M, Blosner M. The World Health Organization global database on child growth and malnutrition: methodology and applications. Int J Epidemiol 2003; 32: 518–26.
- 40 Jelliffe DB. Infective gangrene of the mouth (cancrum oris). *Paediatrics* 1952; **9:** 544–50.
- 41 Emslie RD. Cancrum oris. Dent Practit Dent Rec 1963; 13: 481-95.
- 42 Taiwo JO. Oral hygiene status and necrotizing ulcerative gingivitis in Nigerian children. J Periodontol 1993; 63: 1071–74.
- 43 Otuyemi O, Ogunbodede E, Adetunji T, Olusile A, Folayan M. A study of acute necrotizing ulcerative gingivitis in Nigerian children *Pediatr Dent J* 1998; 8: 133–37.
- 44 Pindborg JJ, Bhat M, Devanath KR, Narayana HR, Ramachandra S. Occurrence of acute necrotizing gingivitis in South Indian children J Periodontol 1966; 37: 14–19.
- 45 Malberger E. Acute infectious oral necrosis among young children in the Gambia, West Africa. J Periodont Res 1967; 2: 154–62.
- 46 Contreras A, Falkler WA Jr, Enwonwu CO, et al. Human herpesviridae in acute necrotizing ulcerative gingivitis in children in Nigeria. Oral Microbiol Immunol 1997; 12: 259–65.
- 47 Whittle HC, Sanderford Smith I, Kogbe OL, Dossetor J, Duggan NM. Severe ulcerative herpes of mouth and eyes following measles. *Trans R Soc Trop Med Hyg* 1979; 73: 66–69.
- 48 Eisele DW, Inglis AF Jr, Richardson MA. Noma and noma neonatorum. ENT J 1990; 69: 119–23.
- 49 Juster-Reicher A, Mogilner BM, Flidel O, Amitai M. Neonatal noma. Am J Perinatol 1993; 10: 409–11.
- 50 Ghosal SP, Gupta PC, Mukherjee AK. Noma neonatorum: its aetiopathogenesis. *Lancet* 1978; 2: 289–91.
- 51 Freeman AF, Mancini AJ, Yogev R. Is noma neonatorum a presentation of ecthyma gangrenosum in the newborn? *Ped Infect Dis J* 2002; 21: 83–85.
- 52 Alkalay A, Mogilner BM, Nissim F, Barak Y, Handzel ZT, Ostfed E. Noma in a full-term neonate. *Clin Pediatr* 1985; **24**: 528–30.
- 53 Atiyeh BS, Hashim HA, Rubeiz MT, Hamdan AM, Bitar FF, Serhal HM. Necrotising infection of the orofacial tissues in neonates (noma neonatorum). *Scand J Plast Reconstr Hand Surg* 1998; 32: 343–45.
- 54 Lin JY, Wang DW, Peng CT, Tsai FJ, Chiou YM, Tsai CH. Noma neonatorum: an unusual case of noma involving a full-term neonate. Acta Paediatr 1992; 81: 720–22.
- 55 Freeman AF, Mancini AJ, Yogev R. Is noma neonatorum a presentation of ecthyma gangrenosum in the newborn? *Ped Infet Dis J* 2002; 21: 83–85.
- 56 World Health Organization. The leishmaniases and leishmania/ HIV co-infections. WHO-OMS Fact Sheet No. 116. Geneva: WHO, 1996.
- 57 Asiedu K. Mycobacterium ulcerans infection: Buruli ulcer. Africa Hlth 2000; March: 19–21.
- 58 Weaver GH, Tunnicliff R. Noma. J Infect Dis 1907; 4: 8-35.
- 59 Hicken F, Eldredge RB. Acute myelogenous leukemia complicated by noma and streptococcal dermatitis. *Amer J Dis Child* 1935; 50: 1455–64.
- 60 MacDonald JB. On the pathogenesis of mixed anaerobic infections of mucous membranes. *Ann R Coll Surg* 1962; **31**: 361–78.
- 61 Listgarten MA, Lewis DW. The distribution of spirochetes in the lesion of acute necrotizing ulcerative gingivitis: an electron microscopic and statistical survey. J Periodontol 1967; 38: 379–86.
- 62 Loesche WJ, Syed SA, Laughon BE, Stoll J. The bacteriology of acute necrotizing ulcerative gingivitis. J Periodontol 1982; 53: 223–30.
- 63 Sabiston CB Jr. A review and proposal for etiology of acute necrotizing gingivitis. J Clin Periodontol 1986; 13: 727–34.
- 64 Falkler Jr WA, Enwonwu CO, Idigbe EO. Microbiological understandings and mysteries of noma (cancrum oris). Oral Dis 1999; 5: 150–55.
- 65 Sawyer DR, Nwoku AL, Rotimi VO, Hagen JC. Comparison of oral miroflora between well-nourished and malnourished Nigerian children. J Dent Child 1986; Nov/Dec: 439–43.
- 66 Falkler WA Jr, Enwonwu CO, Idigbe EO. Isolation of Fusobacterium

necrophorum from noma (cancrum oris). Am J Trop Med Hyg 1999; 60: 150–56.

- 67 Slots J, Wikstrom M, Dahlen G. The occurrence of Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Bacteroides intermedius in destructive periodontal disease in adults. J Clin Periodontol 1986; 13: 570–77.
- 68 Gharbia SE, Haapasalo M, et al. Characterization of *Prevotella* intermedia and *Prevotella nigrescens* isolates from periodontic and endodontic infections. J Periodontol 1994; 65: 56–61.
- 69 Gazi MI, Cox SW, Clark DT, Eley BM. Characterization of protease activities in Capnocytophaga spp., Porphyromonas gingivalis, Prevotella spp., Treponema denticola and Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol 1997; 12: 240–48.
- 70 Oliphant JC, Parsons R, Smith GR. Aetiological agents of necrobacillosis in captive wallabies. *Res Vet Sci* 1984; 36: 382–84.
- 71 Falkler Jr WA, Enwonwu CO, Ewell AJ, Idigbe EO. Isolation of fusobacteria from the oral cavities of malnourished Nigerian children living in agricultural and herding villages. Oral Dis 2000; 6: 103–05.
- 72 Ieven M, Vael K, DeMayer M, DeSchepper A, Pattyn S. Three cases of Fusobacterium necrophorum septicemia. Eur J Clin Microbiol Infect Dis 1993; 12: 705–06.
- 73 Meis JF, Polder TW, van de Kar P, Hoogkamp-Korstanje JA. Multiple brain abscesses and bacteremia in a child due to *Fusobacterium* necrophorum. Infection 1993; 21: 174–76.
- 74 Smith LDS. The pathogenic anaerobic bacteria, 2nd edn. Springfield, IL: Charles C Thomas, 1975.
- 75 Smith GR, Turner A, Cinderey R. Susceptibility of wallabies to Fusobacterium necrophorum. Vet Rec 1986; 118: 691–93.
- 76 Paster BJ, Falkler WA, Enwonwu CO, et al. Prevalent bacterial species and novel phylotypes in advanced noma lesions. *J Clin Microbiol* 2002; 40: 2187–91.
- 77 Obiechina AE, Arotiba JT, Fasola AO. Cancrum oris (noma): level of education and occuptation of parents of affected children in Nigeria. Odonto-Stomatol Trop 2002; 90: 11–14.
- 78 Pena M, Bacalao J. Malnutrition and poverty. Ann Rev Nutr 2002; 22: 241–53.
- 79 de Onis M, Monteiro C, Akre J, Clugston G. The worldwide magnitude of protein-energy malnutrition: an over view from the WHO Global Database on child growth. *Bull World Health Organ* 1993; **71**: 703–12.
- 80 Morley D. Severe measles in the tropics. BMJ 1969; 1: 297–300.
- 81 Idigbe EO, Enwonwu CO, Falkler WA Jr. Living conditions of children at risk for noma. Oral Dis 1999; 5: 156–62.
- 82 Rehan NE, Tafida DS. Low birthweight in Hausa infants. Nig J Paediatr 1981; 8: 35–39.
- 83 Ransome-Kuti O. Intra-uterine growth, birthweights and maturity of the African newborn. Acta Pediatr Scand 1985; suppl 319: 95–101.
- 84 Campbell DI, Murch SH, Ellia M, et al. Chronic T-cell mediated enteropathy in rural West African children: relationship with nutritional status and small bowel function. *Pediatr Res* 2003; 54: 306–11.
- 85 Davies-Adetugbo AA. Promotion of breastfeeding in the community: impact of health education programme in rural communities in Nigeria. J Diarr Dis Res 1996; 14: 5–11.
- 86 Adelekan DA. Childhood nutrition and malnutrition in Nigeria. Nutrition 2003; 19: 179–81.
- 87 VanDamme PA. Noma. Lancet Infect Dis 2004; 4: 73.
- 88 Pittet B, Jaquiner A, Montandon D. Clinical experience in the treatment of noma sequelae. *J Craniofac Surg* 2001; **12**: 273–83.
- Thiery G, Liard O, Duboscq JC. Treatment of noma. *Med Trop (Mars)* 2002; 62: 193–8.
- 90 Montandon D, Lehmann C, Chami N. The surgical treatment of noma. Plast Reconstr Surg 1991; 87: 76–86.
- 91 Hartman EH, VanDamme PA, Sauter H, Suominen SH. The use of the pedicled supraclavicular flap in noma reconstructive surgery. *Br J Plast Surg* 2005 Dec 17: (Epub ahead of print). [A: please give full details now]
- 92 Beisel Wr. Nutrition and immune function: overview. J Nutr 1996; 126: 2611S–15S.
- 93 Chandra RK. Nutrition and immunity: lessons from the past. Am J Clin Nutr 1991; 53: 1087–101.
- 94 Beck MA. The influence of antioxidant nutrients on viral infection. Nutr Rev 1998; 56: 140–46.

- 95 Fraker P. Impact of nutritional status on immune integrity. In: Gershwin ME, German JB, Keen CL, eds. Nutrition and immunology: principles and practice. Totowa, NJ: Humana Press Inc, 2000: 147–56.
- 96 Enwonwu CO, Phillips RS, Ibrahim CD, Danfillo IS. Nutrition and oral health in Africa. *Int Dent J* 2004; 54: 344–51.
- 97 Moore SE, Cole TJ, Collinson AC, Poskitt EME, McGregor IA, Prentice AM. Prenatal or early postnatal events predict infectious deaths in young adulthood in rural Africa. *Int J Epidemiol* 1999; 28: 1088–95.
- 98 Ferguson AC. Prolonged impairment of cellular immunity in children with intrauterine growth retardation. J Pediatr 1978; 93: 52–56.
- 99 Albertsson-Wikland K, Boguszewski M, Karlberg J. Children born small-for-gestational age: postnatal growth and hormonal status. *Horm Res* 1998; 49 (suppl 2): 7–13.
- 100 Allen LH. Nutritional influences on linear growth: a general review. Eur J Clin Nutr 1994; 48 (suppl 1): S75–89.
- Hanson LA. Protective effects of breastfeeding against urinary tract infection. Acta Paediatr 2004; 93: 154–56.
- 102 Duncan B, Ey J, Holberg CJ, Wright AL, Martinez FD, Taussig LM. Exclusive breast-feeding for at least 4 months protects against otitis media. *Pediatrics* 1993; **91:** 867–72.
- 103 Liu Y, Albertsson-Wikland K, Karlberg J. Long-term consequences of early linear growth retardation (stunting) in Swedish children. *Pediatr Res* 2000; 47: 475–80.
- 104 Karlberg J, Jalil F, Lam B, Low L, Yeung C. Linear growth retardation in relation to the three phases of growth. *Eur J Clin Nutr* 1994; 48: S25–43.
- 105 Lunn PG, Northrop-Clewes CA, Downes RM. Intestinal permeability, mucosal injury and growth faltering in Gambia infants. *Lancet* 1991; 338: 907–10.
- 106 Solomons NW, Mazarigos M, Brown KH, Klassing K. The underprivileged, developing country child: environmental contamination and growth failure revisited. *Nutr Rev* 1993; 51: 327–32.
- 107 Solomons NW. Environmental contamination and chronic inflammation influence human growth potential. J Nutr 2003; 133: 1237.
- 108 Rice AL, Sacco L, Hyder A, Black RE. Malnutrition as an underlying cause of childhood deaths associated with infectious diseases in developing countries. *Bull World Health Organ* 2000; 78: 1207–21.
- 109 Alverdy J. Aoys E. The effect of glucocorticoid administration on bacterial translocation: evidence for an acquired mucosal immunodeficient state. Ann Surg 1991; 214: 719–23.
- 110 Sauerwein RW, Mulder JA, Mulder L, et al. Inflammatory mediators in children with protein-energy malnutrition. Am J Clin Nutr 1997; 65: 1534–39.
- 111 Clerici M, Shearer GM. A Th1→Th2 switch is a critical step in the etiology of HIV infection. *Immunol Today* 1993; 14: 107–11.
- 112 Enwere GC, Ota MO, Obaro SK. The host response in malaria and depression of defence against tuberculosis. *Ann Trop Med Parasitol* 1999; 93: 669–78.
- 113 Phillips RS, Enwonwu CO, Okolo S, Hassan A. Metabolic effects of acute measles in chronically malnourished Nigerian children. J Nutr Biochem 2004; 15: 281–88.
- 114 Karp CL. Measles: immunosuppression, interleukin 12, and complement receptors. *Immunol Rev* 1999; **168**: 91–101.
- 115 Korman KS, Loe H. The role of local factors in the etiology of periodontal diseases. *Periodontology* 2000 1993; **2**: 83–97.
- 116 Enwonwu CO, Phillips RS, Savage KO. Inflammatory cytokine profile and circulating cortisol levels in malnourished children with necrotizing ulcerative gingivitis. *Eur Cytokine Netw* 2005; 16: 240–48.
- 117 Sandros J, Karlsson C, Lappin DF, Madianos PN, Kinane DF, Papapanou PN. Cytokine responses of epithelial cells to Porphyromonas gingivalis infection. J Dent Res 2000; 79: 1808–14.
- 118 Rouabhia M, Ross G, Page N, Chakir J. Interleukin-18 and gamma interferon production by oral epithelial cells in response to exposure to *Candida albicans* or lipopolysaccharide stimulation. *Infect Immun* 2002; **70**: 7073–80.
- 119 Birkedal-Hansen H. Role of cytokines and inflammatory mediators in tissue destruction. J Periodont Res 1993; 28: 500–04.
- 120 Skerry TM. The effects of the inflammatory response on bone growth. Eur J Clin Nutr 1994; 48: S190–98.

- 121 Pass RF. Epidemiology and transmission of cytomegalovirus. J Infect Dis 1985; **152**: 243–48.
- 122 Flaitz CM, Hicks JM. Herpesviridae-associated persistent mucocutaneous ulcers in acquired immunodeficiency syndrome: a clinicopathologic study. Oral Surg Oral Med Oral Pathol 1996; 81: 433–41.
- 123 Enwonwu CO. Noma (orofacial gangrene). Intern J Dermatol 2005; 48: 707.
- 124 Enwonwu CO. Noma: the ulcer of extreme poverty. N Engl J Med 2006; **354**: 221–24.
- 125 Ngom PT, Collinson AC, Pido-Lopez J, Henson SM, Prentice AM, Aspinall R. Improved thymic function in exclusively breastfed infants is associated with higher interleukin 7 concentrations in their mothers' breast milk. *Am J Clin Nutr* 2004; 80: 722–28.
- 126 Hasselbalch H, Engelmann MDM, Ersboll AK, Jeppesen DL, Fleischer-Michaelsen K. Breast-feeding influences thymic size in late infancy. *Eur J Pediatr* 1999; **158**: 964–67.
- 127 Chandra RK. Foreword. In: Gershwin ME, German JB, Keen CL, eds. Nutrition and immunology: principles and practice. Totowa, NJ: Humana Press Inc, 2000: V–XII.