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ABSTRACT

A novel snake model suitable for edge extraction of band-
shape objects is presented in this paper. Based on the
proposed model, an edge tracking system, EdgeTrak, has
been developed which is being used by speech scientists
in speech research and other related applications. Unlike
the classical active contour models which only use gradi-
ent of the image as the image force, the proposed snake
model incorporates the edge gradient and intensity infor-
mation in specific regions around each snake element. It
can be used to extract edges that are open or closed con-
tours, which makes it different from other active contour
models that use homogeneity of intensity in a region as the
constraint and thus are only applied to closed contours. The
proposed snake model also takes into account the contour
orientation so that any unrelated edges in the image will be
discarded even if these edges have high gradient, or enclose
a homogeneous region. Dynamic programming is used as
the optimization method in our implementation and the im-
age information update is naturally incorporated in the op-
timization process. Experiment results on face edge and
human tongue tracking are also presented in this paper and
the robustness and accuracy of the proposed model is veri-
fied by quantitative and qualitative analysis.
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1 Introduction

Snake [1], or active contour, has attracted a considerable
amount of attention and is popularly used for automatic ex-
traction and tracking of object edges. Snake is an energy
minimization model whose energy terms are classified as
internal and external. The internal energy is related to the
contour shape and the minimization goal for internal en-
ergy is to get smooth and continuous curves. This makes it
possible to estimate the edge positions even in places where
the surface is interrupted. The external energy usually is the
negative of the image gradient and is the term that attaches
the active contour to the image. Cohen [2] [3] proposed the
balloon model, Gunn [4] introduced the dual active con-
tour model to prevent the active contour from stopping at
local minima. Wang [5] introduced the B-Spline represen-
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Figure 1. Left: An example of ultrasound images of the
tongue. Right: An example of closed contour

tation of snake, which is a multistage active contour model.
Chalana [6] and Akgul [7] applied temporal smoothness in
addition to the spatial constraint in a single frame. Chan [8]
introduced a region-based external energy instead of the
gradient of the edge of a closed contour. Amini [9] de-
veloped dynamic programming as the optimization process
for the snake model to guarantee the global optimization.

Although different energy types have been proposed
in these active contour models, the external energy is usu-
ally related to the gradient of the image. In reality, im-
ages are generally noisy and there are always high-contrast
unrelated edges which make the gradient information in-
sufficient to extract edges of interest. By constraining the
homogeneity of intensity in a region, the edge of a region
in a noisy image can be successfully extracted [8], but this
constraint has some limitations:

First, it can only be applied to closed contours. It can
not be used in applications where open contours need to be
tracked, such as tracking the surface of the human tongue
in ultrasound images. The ultrasound images are formed
by propagating ultrasound waves through a section of the
subject’s tongue, and the surface of the upper tongue part is
obtained in the image [10]. An ultrasound tongue image is
shown in the left of Figure 1. The bright white band is the
air reflection at the upper surface of the tongue. The lower
edge of the band is the upper surface of the tongue, and the
upper edge of the band is useless. Thus, only lower edge
is of interest to speech scientists though both edges have
high gradient. It is hard to distinguish them by only using
gradient information and there is no enclosed region where
the constraint of homogeneity of intensity can be applied.



The second limitation of the constraint of intensity
homogeneity can be seen from the example image in the
right of Figure 1. In this image there is a key-chain ring
which has the shape of a band. If the outer edge of the
key-chain ring is of interest, the constraint of intensity ho-
mogeneity will fail since the region enclosed by the inner
edge is more homogeneous than the region enclosed by the
outer edge.

The proposed snake model in this paper combines
both edge gradient and intensity in specific regions. The
specific regions are not enclosed by the object contour.
They are in fact associated with each snake element, and
are split into two parts: one part is inside the band and the
other part is outside the band. Whether one part is inside
or outside the band is defined by the orientation of the con-
tour. By considering the intensity difference of these two
regions, the upper edge and lower edge of the air reflection
in the ultrasound images, or the inner edge and the outer
edge of the key-chain ring, can be distinguished. The pro-
posed snake model has been applied to track the human
tongue from ultrasound images, and also the human face
boundary from video images. A developed system, Ed-
geTrak, is being used in speech and swallowing research
by speech scientists, and its robustness and accuracy is ver-
ified by quantitative and qualitative analysis in this paper.

2 TheActive Contour Mode

The active contour model, or snake [1], is an energy min-
imization method to extract edges in images. The energy
definition for snakes is:

ETotal = aEint + /BEe:vt (1)

where E;,; is the internal energy, E..; is the external en-
ergy, a and 3 are the weighting parameters. E;,,; controls
the contour shape and it is only related to the geometry
property of the contour. E.,; attaches the contour to the
image and defines the image features that are of interest.

The internal energy controls the smoothness and con-
tinuity of the contour and is defined as [11]:
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where v; is the i*" snake element, «; and 3, are the weight-

ing parameters. d is the average length between two con-
tinuous snake elements.

The external energy is usually defined as the negative

of the image gradient [4] [12] [11] and we use the normal-

ized external energy as:
Eeaf:t(vz') =1- |V—7(Uz)| /M (3)

where M is the normalization constant.

In reality, using only gradient information as the ex-
ternal energy is not enough due to the image noise and the
high-contrast edges unrelated to the interest. The constraint
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Figure 2. The definitions for ¢;, n;, R; and R;.

of homogeneity of intensity in a region is also not appropri-
ate in case of open contours or closed contours for a band-
shape object. A region based band energy is presented be-
low to solve these problems.

In our active contour model, the contour is a set of
snake elements [vg, v1, ..., vn—1] and the order of these el-
ements is kept throughout the optimization process. For
snake element v;, we define its tangent ¢; as the direction
of the line connecting its two neighbor elements:

Vit1 — Vi—
ti — i+1 i—1 . (4)
|Uz'+1 - Uz'—1|

The normal vector n; of element v; can be obtained by ro-
tating ¢; 90 degrees in the count-clockwise direction. Then
we can define two regions R; and R;. for v;. R; is a quadri-
lateral with one edge connecting v; and v;41 while another
edge is in the normal direction. R; is same as R; except
that it is in the opposite direction of the normal. For a band-
shape object, R; should be inside the band and R; should
be outside the band, or vice versa. The difficulty in defining
R; and R'i is that we can not easily decide the edge length
of the quadrilateral in the normal direction. This should
depend on the application and the length should approxi-
mately be the depth of the band. In our tracking system,
we simply approximate this length as the average length
between adjacent snake elements. The definitions for ¢;,
n;, R; and R; are shown in Figure 2.

Suppose R; is inside the band and the band-shape ob-
ject of interest has a high intensity value than the back-
ground of the image, then the difference between the mean
intensity of region R; and the mean intensity of region R;.
should be large. The mean intensity difference between R;
and R; is:
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where p; is the pixel in region R;, p'j is the pixel in region
R;, n is the number of pixels in region R; or R; and N is
the normalization constant. In our application, N is 255;



Figure 3. Extraction of the outer edge of a key-chain ring.
Snake elements are shown with different colors for visu-
alization purpose. Top: Snake initialization. Bottom left:
edge extracted without band energy. Bottom Right: edge
extracted with band energy

The region based band energy is then defined as:

\_ | pen dif(vi) <0
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where pen is a penalty constant applied to v; when the
mean intensity difference between R; and R; is less than
zero. In our application, we let pen = 2 and get good re-
sults for the edge extraction.

Now we have both intensity and gradient information
for a snake element and we define a new external energy:

B0y (Vi) = Epana(Vi) - Begy (v7). (7)

E,.;(v;) uses both intensity and gradient instead of
only using gradient. Most importantly, the gradient is
just for the snake element while the intensity informa-
tion comes from neighbor regions around the snake ele-
ment. This is very helpful in the tracking problem when
the speckle noise is presented in the image since speck-
les are not favored by E,_, (v;) where the intensity value
is calculated over regions. Also the unrelated edges in the
images such as the upper edge of the air reflection and the
inner edge (or the outer edge if the orientation of the con-
tour is reversed) of the key-chain ring will get a penalty
from Eyqnq(v;) and will not attract the active contour any
more.

The performance of band energy is shown in Figure
3 where the outer edge of the key-chain ring is the inter-
est. The top image is the initialization of the snake. With-
out the band energy, the snake is attracted to the high-
contrast inner edge as shown in the bottom left image.
With the band energy and appropriate contour orientation
definition(counter-clockwise), the outer edge of the key-
chain ring is correctly extracted in the bottom right image.

Band energy is important in order to correctly detect
the human tongue surface in ultrasound images (see Figure

4 for an example). Without the band energy, some snake
elements are attracted toward unrelated high-gradient edges
(the tongue upper edge) while with band energy, the tongue
surface is correctly extracted.

The band energy definition depends on the normal di-
rection of the snake element. In the above key-chain ring
example, one can reverse the contour orientation to extract
the inner edge of the key-chain ring easily since region R;
and R'Z- are interchanged. In case the object of interest has
lower intensity than the background of the image, the band
energy can still work in the same way with appropriate con-
tour orientation definition.

3 Optimization Process

The original snakes [1] uses a variational approach as the
optimization method. Variational approaches can not guar-
antee global optimality of the solution. Dynamic program-
ming [9] ensures global optimality of the solution and the
contour information can be dynamically updated during the
optimization process.

In EdgeTrak, the optimization method is based on dy-
namic programming [9]. The normal of the snake element
v; 1s recalculated in each optimization step. From the def-
initions of E;,,,(v;) and E,, (v;) in Equations (2) and (7)
respectively, one can see that the energy of the snake ele-
ment v; only depends on two neighbors of the element and
itself. The optimization for one contour can be processed
in multiple steps. Each step is decomposed into n indepen-
dent stages. In stage ¢ only the energy of v; is minimized
and the elements under consideration are only v; 1, v; and
vi4+1. After n stages, the energies of all snake elements are
minimized and the energy of each element is summed up as
the current E1,4;. This process continues iteratively un-
til the Er,tq; does not decrease any more. Compared with
the exhaustive search method, the search cost with dynamic
programming is dropped from O(I™) to O(n * ?) (n is the
number of snake elements and [ is the size of the search
space respectively).

An efficient way to define the search space for the
snake element v; is to restrict the search along the normal
direction of the point. In fact, due to the aperture problem,
only the deformation along the normal direction can be de-
tected. In our application, search is in the normal direction
and the position of each snake element is rearranged along
the tangent direction of this point after every step of the op-
timization process. The purpose of the rearrangement is to
keep all snake elements evenly located along the contour
while the current contour shape is kept unchanged.

E,;(v;) depends on regions R; and R;. These two
regions are decided by the normal of the snake element. In
each step of the optimization process the normal is calcu-
lated to decide the search direction and at the same time R;
and R, can be obtained according to the normal.



Figure 4. Extraction of the lower edge of human tongue. Left: Ultrasound tongue image. Middle left: Snake initialization.
Middle right: edge extracted without band energy; some snake elements are attracted to the uninteresting high-gradient upper
edge of the air reflection. Right: edge extracted correctly with band energy.

Figure 5. Image sequence of human tongue motion. Every
10th frame from 67 frames is shown. Images are ordered
from top to bottom, left to right.

4 Experiment Results

4.1 Validation of Human Tongue Trackingin
Ultrasound I mages

EdgeTrak has been applied to ultrasound image sequences
of human tongue motion for tracking. In this system, the
user input is just several points along the tongue surface in
the first frame. An approximated contour is obtained by B-
spline interpolation. This contour is then attracted towards
the tongue surface by the automatic dynamic programming
optimization process. Every frame in the sequence gets its
snake initialization from the previous frame and the snake
is optimized in the same way as in the first frame. The
tracking result for Figure 5 is shown in Figure 6. An-
other ultrasound image sequence is shown in Figure 7 and
its tracking result is shown in Figure 8. The visual in-
spection of the tracked contour shows that our snake model
works pretty well.

In order to verify the result quantitatively, we compare
the difference between the automatic tracking results and

Figure 6. Tracked contours for the sequence in Figure 5.
User input is only seven points in the first frame. All con-
tours are tracked automatically.

the manual contours drawn by the speech scientists, and
the difference between the manual contours drawn by dif-
ferent speech scientists. The difference between two con-
tours was calculated using a Mean Sum of Distances(MSD)
by measuring the distances between the closest snake ele-
ments of each contour. The MSD between two contours
U = [u1,uz,...,up] and V = [v1, 09, ..., v,] is defined as:

1 n n
MSD(U,V) = 5 (3 min vi—u;|+_ min |u;—v;]).
i=1 i=1
(8)

Contours tracked by EdgeTrak and manual tracking
by two speech scientists for three speech sequences were
compared. The speech materials for these three sequences
are "yaya”, "golly” and "he sought” respectively. The com-
parison is listed in Table 1. As the numbers indicate,
the automatic contours are not isolated from the expert de-
tected contours and the pixel errors between the automatic
contours and manually drawn contours by scientists are
quite low.

EdgeTrak is currently being used by speech scientists.



Figure 7. Image sequence of human tongue with different
motion. Every 4th frame from 33 frames is shown. Images
are ordered from top to bottom, left to right.

“yaya” | "golly” | “he sought”
expert 1 vs. expert 2 3.77 2.47 2.50
automatic vs. expert 1 2.64 1.83 2.39
automatic vs. expert 2 3.59 2.20 3.02

Table 1. Mean distance errors in pixels. 1 pixel=0.295 mm.

Our feedback from them indicates that the system is effi-
cient and robust for speech research and related applica-
tions.

4.2 Tracking the Human Face

Although there is no obvious band shape presented in the
edge of the face, the proposed shake model can still be ap-
plied to face tracking by considering that there is a virtual
band along the face edge. The actual face boundary should
be the outer edge of this virtual band. The difference be-
tween the virtual band intensity and the intensity of the non
face area will help us to correctly locate the face boundary.

There is no ground truth for the face boundary to eval-
uate our tracking results. By visually comparing the face
boundary tracked without band energy (Figure 9) and the
tracking results with band energy (Figure 10), one can see
that the face boundary is correctly tracked by the proposed
snake model. Unrelated edges such as the high-gradient
part below the lip are successfully discarded by using the
band energy. Note that we have defined our contour to be

Figure 8. Tracked contours for the sequence in Figure 7.
The user input is only seven points in the first frame. All
contours are tracked automatically.

“open” on the face boundary, in order to only track the im-
portant details during facial expressions.

5 Conclusion

A snake model which is suitable for edge extraction of
band-shape objects is presented in this paper. Region in-
formation around each snake element is incorporated with
the image gradient and the contour orientation is taken into
account in our snake model. Compared with the traditional
snake model and other models which use homogeneity of
intensity in a closed region as the image constraint, our
snake model is robust to the speckle noise and can be ap-
plied to open contour tracking problems where region in-
formation is involved.

The robustness of the proposed model has been ver-
ified by comparing the automatic tracking results and the
manual contours drawn by the speech scientists. EdgeTrak
is the edge tracking system that has been developed based
on the proposed snake model and is being used by speech
scientists. The feedbacks from them indicates that the sys-
tem is efficient and accurate for speech research and related
applications. The proposed snake model can also be used
to extract edges of non band-shape objects by considering a
virtual band along the object edge. Its application to human
face tracking has been shown in this paper and the tracking
result has been verified by qualitative evaluations.



Figure 9. Face tracking without the band energy for a "sur-
prise’ sequence. Note that the boundary is not correctly lo-
cated at the chin. There are 20 frames in this sequence and
every 4th frame is shown. The person in the image is mov-
ing toward the camera at the same time with a ’surprised’
expression.
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