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ABSTRACT

Harmonic phase analysis has been used to perform noninvasive organ motion and strain estimation using tagged
magnetic resonance imaging (MRI). The filtering process, which is used to produce harmonic phase images used
for tissue tracking, influences the estimation accuracy. In this work, we evaluated different filtering approaches,
and propose a novel high-pass filter for volumes tagged in individual directions. Testing was done using an open
benchmarking dataset and synthetic images obtained using a mechanical model. We compared estimation results
from our filtering approach with results from the traditional filtering approach. Our results indicate that 1) the
proposed high-pass filter outperforms the traditional filtering approach reducing error by as much as 50% and
2) the accuracy improvements are especially marked in complex deformations.
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1. INTRODUCTION

Harmonic phase analysis (HARP) is a motion estimation method for tagged MRI that was originally developed to
measure 2D cardiac motion.1,2 In contrast to traditional registration methods, which depend on image intensity,
HARP analysis uses the phase values, which offers increased robustness to noise and fading effects.3 For this
reason, phase-based methods have been used to study the motion of organs other than the heart, including the
brain,4 and the liver.5 Motion estimation has also been performed in the tongue to study speech generation.9

Much of this previous work has been performed following similar strategies and was used in earlier cardiac work
in 2D. However, analysis of 3D tongue motion, as in other non-cardiac applications, requires consideration of
fundamental differences in tissue deformation profiles, how they can affect the performance of motion estimation,
and what can be done to reduce potential errors.

The fundamental principle behind HARP analysis is to track the harmonic phase information defined at
each material point in the tissue.1,2 Because the harmonic phase is a material property that moves with the
tissue, it can be tracked by finding locations of corresponding phase values along a sequence of time frames.
The basic steps of HARP analysis are shown in Fig. 1. Before harmonic phase values can be tracked, harmonic
phase images are extracted from standard tagged images using filtering in the Fourier domain (k-space). The
filter demodulates motion information from the original tagged image; ideally, the filtered harmonic phase image
should retain all phase shifts associated with motion, while removing any interference from other sources. For
this reason, tracking accuracy in HARP is related directly to the underlying motion, and the characteristics of
the filter used to obtain the harmonic phase images.

By design, motion induces changes in the patterns of a tagged image. If motion is rigid, the periodic tagged
pattern shifts in the direction of motion along with its harmonic phase values. In contrast, deformation results
in stretched or compressed tag patterns, which changes the frequency. The amount of deformation is measured
using a tensorial quantity called strain, which corresponds to the spatial gradient of the displacement field. Strain
is often the end point of analysis of motion because it is related to changes in shape.
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Figure 1. Basics of HARP analysis. The frequency spectrum of tagged images exhibits harmonic peaks(white arrow),
which are isolated to obtain harmonic phase images for tissue tracking. Motion in 3D can be extracted from tagging in
three orthogonal directions.

Traditional tags called spatial modulation of magnetization (SPAMM), have been applied as a grid.6 While
this strategy reduces acquisition time, it produces k-space information with harmonic peaks in each grid direction,
increasing the likelihood of interference between them. The conventional HARP filter is designed to reduce
possible interference by applying a circular filter centered at harmonic peaks in Fourier space.1 (Harmonic peaks
arise at the tag frequency ωtag due to the periodic nature of the tags). Depending on the type of images used to
apply the tags, the radius of this filter can be 0.5 ωtag (for regular SPAMM images), or ωtag (for complementary
SPAMM images).1,2 However, this comes at the cost of reducing sensitivity to motion-induced frequency shifts
beyond the filter cutoff frequency.

Alternatively, SPAMM can be applied in different volumes with a single tagging direction each. Although this
strategy increases acquisition time, it eliminates the influence of other harmonic peaks from additional tagging
directions and the possibility of interference from them. Thus, we hypothesize that a high-pass filter is better
suited to preserve the motion information, particularly in motion fields that induce large frequency shifts.

2. CONTRIBUTIONS

Previous studies have proposed different bandpass filters for optimizing cardiac HARP in 2D.7,8 However, there
is a lack of systematic analysis of the effects of harmonic phase image extraction on 3D displacement results
using newer approaches to acquire and track tagged images.

We propose a novel approach to process tagged SPAMM images for the analysis of 3D motion. As a large
portion of the literature has focused on bandpass filters, the proposed high-pass filter has been previously
overlooked. However, our experiments show that a high-pass filter outperforms the traditional HARP filter in
terms of tracking accuracy, especially in cases with complex and flexible deformations (e.g., tongue motion).
Because the proposed filtering approach exploits the intrinsic characteristics of images independently tagged in
individual directions (instead of a single image with a grid), these results also have ramifications in the design
of future motion estimation experiments for measuring large 3D deformations.

3. FILTER DESIGN

This study compares the tracking performance of the three filtering approaches shown in Fig. 2. In all the
experiments, the filters were applied to MRI slices (SPAMM) interpolated into a common volume to generate
a volumetric time sequence using cubic spline interpolation. The first filtering approach is an extension of the
traditional HARP filters1,2 from circles in 2D to spheres in 3D. For example, if the image is tagged in the
x-direction, the corresponding filter is

fSPx(ux, uy, uz) =

1, if (ux − ωtag)2 + uy
2 + uz

2 6
(ωtag

2

)2
;

0, otherwise,
(1)

where ux, uy, and uz represent frequency coordinates in the k-space. The second approach comprises extended
bandpass filters or ‘slab’ filters, which preserve high frequencies orthogonal to the tagging direction. For instance,
in the x-direction, this would result in



Figure 2. HARP filters. Prior to tracking, the tagged volumes were filtered using spherical (a), ‘slab’ (b), and high-pass
filters (c) to extract harmonic phase images. SP: spherical filters; SL: ‘slab’ filters; HP: high-pass filters.

fSLx(ux, uy, uz) =

1, if (ux − ωtag)2 6
(ωtag

2

)2
;

0, otherwise.
(2)

The last approach consists of filtering the images with a high-pass filter. For the x-direction, the filter would be
defined as

fHPx(ux, uy, uz) =

{
1, if |ux| >

ωtag

2
;

0, otherwise,
(3)

which would preserve frequency content starting at 50% of the first harmonic frequency and above in each
orthogonal direction. Note that the above descriptions apply to one tagging direction, and additional filters
(e.g., fHPy and fHPz) would be necessary to obtain harmonic phase images in the remaining directions (y and z).
To reduce edge effects, the filters were smoothed using a Gaussian function of σ = 0.02ωtag prior to application.
Due to the symmetric nature of harmonic peaks, dual filters were used for the positive and negative harmonic
peaks, which were combined to reduce phase errors using a method described in the literature.10

4. EXPERIMENTS

The main hypothesis was tested by performing two experiments. In both cases, tracking was performed using the
phase vector incompressible registration algorithm (PVIRA),3 which is a 3D motion estimation method using a
phase formulation of the iLogDemons algorithm.11

4.1 Comparison Against Open Benchmarking Database

The goal of the first experiment was to evaluate the performance of the filters in terms of displacement error using
experimental MRIs. The experiment used images from a phantom of cardiac motion, which is the conventional
application of MR-based motion estimation.

4.1.1 Imaging Data

Tagged MRI slice sets encoded in orthogonal directions were obtained from an open database introduced in a
2011 MICCAI workshop for validation of myocardial tracking algorithms.12 Sparse slices from a deformable,
MRI-compatible phantom were interpolated into three homogeneous volumes, and filtered using the approaches
described in Section 3. The 3D cardiac phantom, along with sample tagged slices is shown in Fig. 3. The dataset
included eight manually tracked landmarks obtained from two expert observers. Values from the two observers
were averaged to obtain a single set of tracked landmarks and used as a ground truth. The median inter-observer
variability was reported to be 0.77 mm.12



Figure 3. Open access 3D cardiac phantom: (a) is 3D view for the experimental cardiac phantom. S1 (c) and S2 (d)
are two orthogonal slices from the phantom (b). For visualization purpose, the vertical tags and the horizontal tags are
combined in a single image (c).

4.1.2 Characterization of Tracking Error

Tracking accuracy was measured by comparing the Euclidean distance between the ground truth, and the land-
marks evaluated using the displacement fields obtained with each of the filters. Descriptive statistics (including
the median error, and error range) were calculated across all eight landmarks and 20 time points. The database
was designed with a focus on displacements, and no strain computation was performed given the sparsity of the
landmarks.

4.2 Analysis of Simulated Tongue Motion

This experiment focused on analysis of tongue motion, which produces fundamentally different deformation fields
than that of the heart.12 The goal of the experiment was to evaluate the different filters in terms of displacement
and strain error. To this end, synthetic tagged images of different motion fields were generated using a finite-
element model, which has the benefit of producing dense displacement and strain values that can be used as a
ground truth. This benchmarking approach has been previously described in the literature.13

4.2.1 Finite-Element Simulations

The finite-element mechanical model of the tongue appears in Fig. 4. The model included the mandible, the hyoid
bone, and the tongue, which consisted of muscular compartments representing 13 muscles. It was constructed
using 256 quadratic hexahedral elements for the deformable tongue, and 3000 linear quadratic elements to
represent rigid bones. Material parameters were extracted from the literature.13,14 Simulations were generated
using FEBio Software,15 which was set to ramp up contractions producing 2–11 time frames per simulation
depending on the amount of deformation.

Motion was produced by assigning active contraction of the muscular compartments according to previous
numerical studies,13,16 along with manual tuning of the model. The activation intensity was expressed as
a percentage of the maximum sarcomeric activation assumed to be 35kPa. A total of five simulations were
produced to address speech generation and to approximate rigid motion. The simulations (shown in Fig. 5)
included:

1. Semi-rigid tongue motion to simulate minimal tongue deformation (mandible rotation by −3.44°);

2. /s/ as the sound of the letter ‘s’ (1.8% activation of GG, 3.5% activation of SL, 9% activation of T, 9%
activation of V, 1.8% activation of GH, mandible Rotation by −0.40°);

3. /k/ as the sound of the letter ‘k’ (30% activation of IL, 30% activation of HG, 80% activation of SG);

4. /a/ as in cat (3% activation of GG, 54% activation of HG, 3% activation of SG, mandible Rotation by
−1.38°);

5. /e/ as in tea (7.2% activation of SL, 0.6% activation of T, 60% activation of V, 3% activation of HG, 30%
activation of SG);



4.2.2 Generation of Synthetic Data

Nodal displacements from the mechanical model were interpolated onto an imaging grid with 0.7813 mm ×
0.6185 mm × 0.7813 mm resolution. Both Lagrangian and Eulerian displacements were obtained using the first
time frame as the reference configuration. The Eulerian displacements were used to deform an atlas T1 image
of the human tongue.17 Prior to deformation, synthetic SPAMM was applied using a tag frequency of 15 mm,
which is similar to existing in vivo studies.3 The Lagrangian displacement was used to generate ground truth
measurements for displacement and strain. The Green-Lagrange strain tensor18 was calculated in the imaging
gird using finite difference.

4.2.3 Characterization of Strain Error

The images were filtered and tracked using the methods described above. After obtaining displacement results,
the Euclidean distance to the ground truth was calculated in each field. Displacement error was defined as the
median Euclidean distance within the tongue at a given time frame. Strains were calculated from the results
obtained using each of the filters, and compared to the ground truth. Comparisons were based on the difference
between the median of the shearing strain γmed from the ground truth and each of the test fields. The scalar
quantity γmed was defined as the median of the difference between the first and the third eigenvalue of the strain
tensor across each material location.18 Error was quantified as the spatial median of the difference at a given
time frame. To better understand the relationship between deformation and motion estimation performance,
error values were compared to γmed via scatter plots.

Figure 4. Synthetic FE model of tongue: The synthetic model is used to simulate the muscle activation of the human
tongue. According to the tongue anatomy, essential muscles are marked in (b): SL = superior longitudinal; V = verticalis;
SG = styloglossus; HG = hyoglossus; GG = genioglossus; GH = geniohyoid; IL = inferior longitudinal; T = transverse;
SM = surrounding tissues.

Figure 5. Simulated configurations with increasing complexity by activating different muscles to have semi-rigid motion
(a), to pronounce /s/ (b), /k/ (c), /a/ (d), /e/ (e). The black dotted outline represents the original configuration when
there is no deformation.



Figure 6. Results for STACOM phantom datasets: (a) 3D Tracking results for one landmark, (b) whole range box-plots
of tracking errors. The gray dashed line represents the inter-observer variability.

5. RESULTS AND DISCUSSION

5.1 Comparison Against Open Benchmarking Database

Tracking of one of the eight landmarks appears in Fig. 6(a). The median Euclidean distance (error) across
the first 20 time frames was 1.01± 0.72 mm when using the traditional HARP filter, 0.97± 0.88 mm using the
‘slab’ filter, and 0.67± 0.28 mm using the high-pass filter—an improvement over the traditional approach. The
tracking trajectory (Fig. 6(a)), shows that the high-pass filter tracks more closely to the ground truth across all
time frames. The error distribution also shows that the high-pass approach results in less scatter in error values,
as shown in Fig. 6(b).

5.2 Analysis of Simulated Tongue Motion

The displacement error across five simulated cases at the last time frame using the different filters appears in
Table 1. The general trend is that the high-pass filter outperforms the others across the different motions. The
high-pass filter yielded the largest error (median) in /e/ at 0.162 mm, and the smallest in semirigid motion, at
0.090 mm. In contrast to the general trend, the spherical filter performed less accurately with errors as large as
0.362 mm in the /e/ simulation, and as low as 0.143 mm in the semirigid motion simulation. The slab filter’s
performance appeared to be between the extremes. The differences between the filters varied depending on the
simulations, the lowest difference was observed in the semirigid simulation, and the largest on the /e/ simulation.
Magnitude color maps of the ground truth and the approximated displacements using different filters appears
in Fig. 7, and shows the relative better performance of the high-pass filter (Fig. 7(c)), which has the highest
resemblance to the ground truth (Fig. 7(a)).

Strain error at the last time frame for each of the simulations appears in Fig. 8(a). Just as in the analysis
of displacements, the trend is similar; the high-pass filtering approach yields lower error and less spread. Unlike
the analysis of displacements, strain calculation offers an explanation for the difference between the filters across
different simulations: Figure 8(b) shows a positive correlation between strain difference and the magnitude of
strain (per γmed). As may be expected, higher strains, which are the spatial gradient of deformation, result in
larger frequency alterations in the tagging pattern. Given the nature of frequency modulation,9 large frequency

Table 1. Displacements error (mm) for the 5 simulated cases

Semi-Rigid Motion /s/ /k/ /a/ /e/
SP 0.143± 0.123 0.307± 0.211 0.330± 0.240 0.334± 0.230 0.362± 0.500
SL 0.108± 0.125 0.190± 0.163 0.184± 0.175 0.203± 0.195 0.224± 0.368
HP 0.090± 0.105 0.113± 0.141 0.137± 0.144 0.148± 0.164 0.162± 0.255



Figure 7. Displacements estimation results at the last time frame: (a) Total Lagrange Displacements map of ground truth;
Estimated Lagrange Displacements map using spherical filter in (b), using ‘slab’ filter in (c) and using high-pass filter in
(d).

Figure 8. Strain estimation results: (a) is the strain estimation errors for five simulations at the last time frame shown
in 5% to 95% boxplot. (b) describes the relationship between strain estimation error and median of shear strain for /a/,
/k/, and /s/.

alterations in tagged pattern will result in broader spectral spread from the harmonic peak. Thus, information
form regions with larger spread are more likely to fall outside the filter’s cut off range. As hypothesized, the
high-pass filter preserves this information, resulting in better tracking performance.

Our results show that displacements and strains within the feasible range in speech generation can result in
frequency components that can be outside standard HARP filtering. One way to improve performance, if the
scanning time allows it, is to acquire separate images with independent tagging directions. This practice would
enable the use of the presented filter. One possible downside may be an increased sensitivity to noise, which will
be the subject of future research.

6. CONCLUSION

This work presented a method to extract harmonic phase images that improves motion estimation accuracy.
The high-pass method yielded error improvement of as much as 50% and the improvement appeared to be
more apparent in complex motion patterns (Fig. 7). When the displacement field is relatively simple, the
modulated frequency components accumulate around the first harmonic frequency peak near the band-pass
region. However, more complex displacements field leads to more modulations and spreads of the frequency
components, where some higher frequency components are discarded by the band-pass filters but maintained by
the high-pass approach. Potential weaknesses of our filter are the sensitivity to noise in the acquired images and
the requirement for longer image acquisition time to get tagged images in individual directions.
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