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Abstract. Strain tensor fields quantify tissue deformation and are
important for functional analysis of moving organs such as the heart and
the tongue. Strain data can be readily obtained using medical imaging.
However, quantification of similarity between different data sets is diffi-
cult. Strain patterns vary in space and time, and are inherently multidi-
mensional. Also, the same type of mechanical deformation can be applied
to different shapes; hence, automatic quantification of similarity should
be unaffected by the geometry of the objects being deformed. In the pat-
tern recognition literature, shapes and vector fields have been classified
via global distributions. This study uses a distribution of mechanical
properties (a 3D histogram), and the Wasserstein distance from opti-
mal transport theory is used to measure histogram similarity. To evalu-
ate the method’s consistency in matching deformations across different
objects, the proposed approach was used to sort strain fields according
to their similarity. Performance was compared to sorting via maximum
shear distribution (a 1D histogram) and tensor residual magnitude in
perfectly registered objects. The technique was also applied to correlate
muscle activation to muscular contraction observed via tagged MRI. The
results show that the proposed approach accurately matches deformation
regardless of the shape of the object being deformed. Sorting accuracy
surpassed 1D shear distribution and was on par with residual magnitude,
but without the need for registration between objects.
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1 Introduction

Tissue deformation is necessary for vital bodily functions such as cardiac blood
pressurization [1], locomotion via the musculoskeletal system [2], and motion in
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the tongue (involved in breathing, swallowing, and speech) [3]. The strain tensor
quantifies deformation, and can produce biomarkers related to organ function
[1,3]. For this reason, many acquisition and processing methods have been devel-
oped for using medical imaging to observe motion (as in Fig. 1) and to measure
strain. Strain can be reduced to global metrics to simplify clinical or research
applications, e.g., radial or circumferential strains in cardiac deformation [1], or
fiber strains for analysis of tongue motion [3]. However, the state of deformation
across an organ can only be truly captured by a volumetric strain field.

Statistical analysis of mechanical deformation is relevant when studying dis-
ease progression and functional mechanisms, particularly with computational
models aimed at predicting deformation, such as in traumatic brain injury
research [4], speech analysis [5], the study of muscular contraction [2], and for
assessing of cardiac contractility [6]. Ideally, these models must agree with exper-
imental data; hence, similarity quantification between tensor fields is useful in: (i)
determining the uncertainty of experimental measurements, (ii) measuring the
descriptive or predictive power of a simulation, and (iii) assessing the sensitivity
of strain results to processing or modeling parameters [7,8]. Strain comparisons
are also useful to align data for atlas generation [9].

Similarity measurement between strain fields is challenging [8]. As with scalar
fields (e.g., images), the concept of similarity is diverse, encompassing not only
correspondence and alignment, but also directionality, magnitude, and orienta-
tion [8]. Mechanical deformation also changes in time and across patients, and is
defined in many different discretization schemes. For instance, image measure-
ments generally result in pixel wise values [1] while computational models often
use finite elements (FE) [10] or (more recently) point clouds [4]. This variety
of configurations and formats can make it difficult to compare strain fields by
means of evaluating field properties in matching comparison points. (Fields can
be defined across different geometric domains, which can have topological or
discretization incompatibilities, limiting or even preventing registration.)

This paper describes a novel approach to measure similarity between strain
tensor fields. The methodology was developed to overcome the need to register
domains, while capturing the spatial distribution of strain within the organ.

2 Background

Assuming that tissue behaves as a continuum for macroscopic deformation, a
particle in the reference configuration X = X(to) ∈ R

3 at time t0 is associated to
a single point in the deformed configuration x(t) via a Lagrangian displacement
field u(X, t) = X −x(X, t). Displacement information is obtainable via medical
imaging e.g., speckle tracking in ultrasound, registration of CINE MRI, or tagged
MRI [1,11], and biomechanics simulations [10]. Relative displacement between
neighboring particles is related to the deformation gradient tensor

F = F (X,x, t) =
∂x(t)

∂X(t0)
= 1 +

∂u(t)
∂X(t0)

, (1)
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Fig. 1. Sequence from magnetic resonance imaging (MRI) during speech generation
(sagittal). Deformation can be seen by comparing the shape of the tongue at the begin-
ning of the sound /@/ (/@/ means “a” as in “car”), which is the reference (ref.) versus
the shapes during the sounds /@/, /s/ (as in “sound”), and /k/ (as in “kiosk”).

where 1 is the identity tensor [12]. F differs from 1 in rigid motion and rotation;
thus, the direct application of F in quantifying deformation is limited. Instead,
we can define strain tensors insensitive to rigid transformations. These include
the (left) Cauchy-Green strain tensor

C = C(X,x, t) = F T F , (2)

and the Green-Lagrange strain tensor E = 1
2 (C − 1) [12]. Eigenvalue decompo-

sition of these quantities yields principal components along key directions such
as the radial and circumferential strains used in cardiac mechanics [1].

Methods for quantification of similarity between strain fields are varied. One
common approach is to apply point-wise norms or patch correlations [8]. While
this is an effective similarity measure, it requires matching points or regions
between two or more geometries. If registration is needed, it can introduce com-
putational expense and (or) registration error. Another common approach is to
compare the distributions of scalar metrics [4,8], which does not require registra-
tion and is effective in cases where similarity is determined largely by magnitude.
However, traditional global distributions are spatially underdetermined resulting
in loss of structural information.

In pattern recognition, structural distributions have emerged as a fast and
effective means of identifying objects [13,14], and these have also been extended
to vector fields [15]. The main idea behind these techniques is the construction of
a structurally sensitive distribution (a shape or vector field signature), which is
populated by sampling properties between points inside each domain. Examples
include 1D histograms constructed from the distance between two random points
within an object [13], and 2D histograms populated by sampling magnitude and
angle differences along streamlines in a vector field [15].

3 Quantifying Tensor Field Similarity

Based on previous work in pattern recognition [13–15], we propose the con-
struction of a structurally sensitive global distribution for each strain field. This
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distribution acts as a strain signature (or a set of features), enabling similarity
quantification. In the context of pattern identification, a metric of similarity is
derived from a normalized measure of distance between distributions.

The properties f for the construction of features are obtained from points
with randomly assigned coordinates R ∈ D ∈ R

3, where D is the domain in
which the strain field is defined. At each point,

f(R) =

⎡
⎣

γmax

θ
γ̄

⎤
⎦ . (3)

The quantity γmax = γmax(R) = E1 − E3 (where E1 and E3 represent the
first and third eigenvalues of E) is the maximum shear strain. Since γmax is
directly evaluated at R, it provides a global component to the distribution. The
other two properties are associated with R and P ∈ D—another point chosen
at random. The local state of deformation at these two locations is coupled via
FRP = F (R)−1F (P ), which is analogous to the distance between random inter-
nal points used to construct shape distributions [13]. FRP represents a mechani-
cal deformation; thus, θ is the net rotation from FRP obtained via singular value
decomposition. Finally, γ̄ = 1

2Σ(CRP )ij (i �= j) is the mean shear strain, which
is extracted substituting FRP into (2). Both θ and γ̄ are relative properties,
providing the structural component of the distribution. Shear and rotation val-
ues are used due to the incompressible nature of tissue, which favors isochoric
deformation—this intrinsic feature affects similarity comparison indirectly.

To approximate the distribution of f(R)∀R ∈ D, N samples fi (i =
1, 2, ..., N) are binned into a 3D histogram pf with d bins. Sample histograms
appear in Fig. 2, and show differences based on the deformation pattern, and
not necessarily on the orientation and geometry of the object being deformed
(Fig. 2(a) is different to Fig. 2(b) given the same object). There are also similar-
ities that can be used to define distance (Fig. 2(a) is closer to Fig. 2(c)).

By edge normalization, any two histograms to be compared, say pf and pg,
are defined in a common simplex Σd = {x ∈ R

d
+ : xT 1d = 1} [16]. (1d denotes

an array of ones.) We can thus write the transportation, or coupling, polytope
U(pf ,pg) = {Z ∈ R

d×d
+ |Z1d = pf , ZT 1d = pg}, which allows posing an opti-

mal transport (OT) problem as seen in some registration and shape similarity
approaches [16–18]. Letting C be a cost matrix reflecting the l2 distance between
the centers of the histogram bins,

Wc(pf ,pg) = min
Z∈U

〈Z, C〉 (4)

is a discrete transport to measure the distance—or dissimilarity—between pf

and pg. (Angle brackets denote the Frobenius product.) Specifically, (4) defines
the Wasserstein distance after obtaining an optimal transport Z�.
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Fig. 2. Field property distributions. The top row shows 3D histograms, where the
count scales sphere radii logarithmically, and color indicates height. The corresponding
deformed shapes include: (a) a rod with square cross-section being bent upwards, (b)
the same rod being twisted, and (c) a cylindrical rod being bent downwards. The
undeformed shape appears below.

Computing Z� for large multidimensional histograms is computationally pro-
hibitive; thus, we implemented an approximation via the Sinkhorn-Knopp algo-
rithm [16]. This approach uses an entropy constraint enforced by a Lagrangian
multiplier λ, i.e., we find Wλ

c (pf ,pg) = 〈Zλ, C〉, where

Zλ = arg min
Z∈U

〈Z, C〉 − 1
λ

h(Z), (5)

with h(Z) = −∑
ij Zij(log(Zij) − 1). For the experiments in this study, we find

that Zλ is a reasonable approximation of Z� for values of λ near 200, while being
faster by nearly two orders of magnitude.

4 Experiments and Results

Sorting Test Strain Fields: Similarity-based sorting was used to determine
accuracy and consistency against other methods. We created a dictionary of
27 simulated deformation fields containing bending, torsion, and extension (nine
cases each). The fields were defined in geometries with different cross-section and
discretization primitives using FE software [10]. A reference (or query) deforma-
tion pattern was matched to dictionary entries. Ideally, similar deformations will
be the closest to the query, not only in top match, but the top k−1 matches—as
there are k = 9 cases with similar deformations. Every field was used as query
against all others to quantify the percentage of successes. For comparison, sort-
ing was performed via: (i) 3D distributions using OT distance (3DOT), (ii) 3D
distributions using the Euclidean distance (3DEU) [15], and (iii) 1D distribu-
tions of γmax using Euclidean distance (1DEU) [4]. Given the random nature of
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the sampling, the comparisons were performed 10 times using different seeds,
and compared using unpaired t-test with significance level at p = 0.01.

The 3DOT approach was able to identify strain patterns regardless of geom-
etry and discretization (see Fig. 3). Note that registration between the shapes—
e.g., a square and a quarter-circular cross-section—would be difficult to perform.
The proposed method was capable of identifying the top five matches with per-
fect accuracy, which reduced to 55% for the top eight matches. This is in stark
contrast compared to 3DEU (accuracy dropped below 80% on the top three, and
was 22% for the top eight), which demonstrates the utility of the OT approach.
1DEU was the least accurate likely due to structural information loss. Statis-
tically significant performance differences between 3DOT and the alternatives
were observed for k = 3 through k = 8. Sampling 104 points and calculation of
Wλ

c took 90 s on a standard 12-core server.

Fig. 3. Strain field sorting results. (a) Typical sorting results using the proposed algo-
rithm. (b) Accuracy of the top k results across all simulations. A start denotes statis-
tically significant differences between 3DOT and both of the alternatives.

Relating Image Measurements to Simulations: We used the proposed
method to associate strain to muscular activation patterns in the tongue. Acti-
vation cannot be reliably measured but can be simulated; thus, it is possible to
infer which muscles are active by matching experimental data to simulations.
Tongue deformation during the sequence in Fig. 1 was measured via tagged MRI
in healthy adult volunteers (n = 7, 4 male, 3 female, with informed consent)
[5]. Strain fields were sampled and 3DOT was used to compare the experimental
results to a dictionary composed of 74 FE simulations. The simulations included
muscular activation and deformation as linear combinations of four categories:
dorsiflexion (D), which moves the tip of the tongue upwards; protrusion (P),
which moves the tip forward; retraction (R), which moves the tip backward;
and ventriflexion (V), which lowers it. The experimental data was decomposed
into percentages of each category (D, P, R, and V) and overall activation level
(AL) based on the top three matches—AL = 0 indicates no activation. Also, the



434 A. D. Gomez et al.

dictionary entries (which are perfectly registered with one another) were sorted
within themselves to compare the top matches via 3DOT, 1DEU, and the defor-
mation gradient residual magnitude ||Fi − Fj || (sampling was also repeated 10
times).

The decomposition results appear in Fig. 4. Deformation from the reference
configuration (early /@/) to /@/ was associated largely to retraction (75 ± 5%)
and to a lesser extent to protrusion (25± 5%) with AL = 3.0. This low value of AL
indicates a small, retraction-like deformation, as observed in Figs. 1 and 4. Defor-
mation to /s/ was associated largely with protrusion (64± 10%), and less so with
retraction and retroflexion (15± 21% and 17± 11%, respectively) with AL = 5.3.
This is consistent with that observed forward motion of the tip of the tongue
during this sound. During /k/ the observed deformation was associated mostly
with retraction (66 ± 10%), and to a lesser extent with protrusion (34± 10%)
with AL = 5. Compared to the reference, the tongue appears to retract during
/k/ in the images. Both of the latter sounds result in larger AL values, as more
activation is needed to achieve larger deformations. When comparing the top
results of dictionary sorting, 3DOT agreed with residual magnitude in 56± 2%
of the top results, compared to 22 ± 3% for 1DEU (statistically significant). Sam-
pling 2 × 104 points and distance measurement took roughly 150 s.

Fig. 4. Decomposition results. The close-up of a typical volunteer (top) is aligned with
the decomposition shown as bar charts, and the models with the closest simulation.

5 Discussion

The proposed method is able to discriminate deformation patterns across differ-
ent geometries and discretizations, its accuracy surpasses the alternatives stud-
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ied, and it is also fast. Distance measurement via OT also shows clear benefits.
The results from motion measurement via tagged MRI are consistent with visual
inspection. The tongue shape varies considerably from subject to subject; thus,
avoiding registration will simplify analysis of motion as larger datasets are pro-
duced. Sorting error was still observed likely indicating that the selection of
features has a level of incompleteness via interdependence or data loss [8]. Also
the distribution approach has no inverse mapping, which would be useful for
machine learning. However, the methodology can be framed in different ways to
address these limitations, e.g., via constructing distributions by sampling along
hyperstreamlines, or applying OT methodology to tensor entries directly, as done
in shape matching [17]. The proposed method remains a viable alternative given
the seeding and computational requirements of these potential approaches.
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